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ABSTRACT

In Gaussian model based audio source separation, source
spatial images are modeled by Gaussian distributions. The
covariance matrices of the distributions are represented by
source variances and spatial covariance matrices. Accord-
ingly, the likelihood of observed mixtures of independent
source signals is parametrized by the variances and the co-
variance matrices. The separation is performed by estimating
the parameters and applying multichannel Wiener filtering.
Assuming that spectral basis matrices trained on source power
spectra are available, this work proposes a method to es-
timate the parameters by maximizing the likelihood using
Expectation-Maximization. In terms of normalization, the
variances are estimated applying singular value decompo-
sition. Furthermore, by building weighted matrices from
vectors of the trained matrices, semi-supervised nonnegative
matrix factorization is applied to estimate the spatial covari-
ance matrices. The experimental results prove the efficiency
of the proposed algorithm in reverberant environments.

Index Terms— Spectral bases, nonnegative matrix fac-
torization, spatial covariance matrix, audio source separation.

1. INTRODUCTION

To tackle the problem of blind source separation (BSS)[1],
many algorithms have been proposed in the literature. Most
of the algorithms work in the time-frequency domain through
a short-time Fourier transform (STFT). In frequency-domain
independent component analysis [2, 3] and clustering [4, 5],
observed mixtures of source signals are modeled as the mul-
tiplication of complex spectra of the signals and complex-
valued mixing vectors. In the under-determined mixing
model, the source signals are obtained by first estimating
the mixing vectors, and then applying binary masking [4],
soft masking [5] or l0-norm minimization [6]. Local Gaussian
modeling of the mixing process [7, 8, 9] has lately emerged to
tackle the source separation problem. Source spatial images
in the observed mixtures are locally modeled by multivariate

complex Gaussian distributions. The covariance matrices
of the distributions are modeled as functions of spatial and
spectral parameters. The audio channels from the location
of a source to the positions of microphones are represented
by a spatial covariance matrix, i.e. the spatial parameter of
the model. Furthermore, each time-frequency point of the
source power spectrum is represented by a scalar variance,
i.e. the spectral parameter of the model. By assuming that the
spatial images of the sources are statistically independent, the
likelihood of the mixtures is a multivariate complex Gaus-
sian distribution. The source signals are obtained by first
estimating the parameters in the sense of maximum likeli-
hood (ML), and then applying multichannel Wiener filtering.
Non-negative matrix factorization (NMF) was involved in
the model in [10, 11]. Applying NMF, the source variance
can be represented as the product of two nonnegative vectors
[12, 13], i.e. the source power spectrum is decomposed into
two nonnegative matrices: a spectral basis matrix containing
constitutive parts of the power spectrum, and a coefficient
matrix containing time-varying weights. The factorization is
achieved by optimizing a cost function using the widely used
multiplicative update rules.

Using a prior knowledge has recently raised as a new trend
to increase the performance of BSS. Source separation can
benefit from information about the mixing environments [9,
14, 15], or the source signals [16, 17]. Prior information about
the source variances can be used to guide the separation sys-
tem. Assuming that spectral basis vectors trained on source
power spectra, are available, in [16, 17] we proposed meth-
ods to estimate the spatial covariance matrix of the Gaussian
model using the time-varying weights. However, the estima-
tion does not exactly follow the changes in the amplitude val-
ues of the covariance matrix from one frequency to another.
In this work we propose a method to follow these changes
by calculating weighted basis vectors from the trained spec-
tral basis vectors. Then both the weighted and original trained
vectors are used to estimate the spatial covariance matrix. The
trained spectral basis vectors can be assumed to be directly
available as in [16], or it is supposed to obtain them through a
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redundant library of spectral basis vectors. In the second sce-
nario a detection step is needed to identify the basis vectors
that have good match with the source signals in the observed
mixtures as in [17]. The rest of the paper is organized as
follows. In Section 2, we present the formulation and mod-
elling of the problem. The proposed algorithm is explained
in Section 3 and the experimental analysis and evaluation are
reported in Section 4. Finally, Section 5 concludes the paper.

2. FORMULATION AND MODELLING

Assume thatN sources are observed by an array ofM micro-
phones. Applying the discrete short time Fourier transform
(STFT), at the frequency bin ω and the time frame l, a M × 1
complex vector x(ω, l) of the observed mixtures can be repre-
sented as the combination ofN source spatial images cn(ω, l)
such as

x(ω, l) =
N∑

n=1

cn(ω, l). (1)

Over the total number of time frames L and frequency bins
Ω, the vectors cn(ω, l) are assumed to be statistically inde-
pendent, and probabilistically modeled by a zero-mean multi-
variate Gaussian distribution, with a M ×M covariance ma-
trix Σcn(ω, l)

cn(ω, l) ∼ Nc(0,Σcn(ω, l)), (2)

where 0 is aM×1 vector of zeros. Under the assumption that
the source signals are statistically independent, the likelihood
function of the observed mixtures x(ω, l) is also a zero-mean
multivariate complex Gaussian distribution with a covariance
matrix obtained as

Σx(ω, l) =

N∑
n=1

Σcn(ω, l). (3)

Over all the time-frequency points, maximum likelihood es-
timation is shown to be the minimization of the minus log-
likelihood as [10]

ξ(θ) =
∑
ω,l

tr(Σ−1
x (ω, l)R̃x(ω, l)) + log |πΣx(ω, l)|, (4)

where |.| denotes the determinant of a square matrix, tr(.) in-
dicates the trace of a matrix, θ = {Σc1

(ω, l), ...,ΣcN
(ω, l)}ω,l

is the set of model parameters, and R̃x(ω, l) is a covariance
matrix of the observed mixtures x(ω, l) that can be empir-
ically obtained in linear or quadratic forms as described in
[11]. Source separation is performed by first estimating the
set θ in the sense of ML. Then, an estimation of the source
spatial images cn(ω, l) is obtained in the sense of minimum
mean square error (MMSE) by applying multichannel Wiener
filtering such as

c̃n(ω, l) = Gn(ω, l)x(ω, l). (5)

The Wiener filter gain is computed as

Gn(ω, l) = Σcn(ω, l)Σ−1
x (ω, l). (6)

The set θ is estimated by minimizing the criterion in (4) by us-
ing a generalized expectation maximization algorithm (GEM)
[18] that consists in alternating the following two steps [8]:

1. E step, given the current estimate of θ and c̃n(ω, l), the
conditional expectation of so-called natural statistics is
computed as follows

R̃cn
(ω, l) = c̃n(ω, l)c̃Hn (ω, l)+(I−Gn(ω, l))Σcn

(ω, l),
(7)

where I is an M ×M identity matrix.

2. M step, given R̃cn
(ω, l), the set θ is updated according

to the minimization of

ξ(θ) =
∑
ω,l,n

tr(Σ−1
cn

(ω, l)R̃cn
(ω, l))+log |πΣcn

(ω, l)|.

(8)

In the spatial covariance decomposition [7], the covariance
matrix of the n-th source spatial images is modeled by a scalar
variance vn(ω, l), encoding the power spectrum of the source
at each time-frequency point, and a M × M time-invariant
spatial covariance matrix Rn(ω), encoding the spatial infor-
mation at each frequency bin. The covariance matrix is then
represented as follows

Σcn
(ω, l) = vn(ω, l)Rn(ω). (9)

For all the probability distributions of the source spatial im-
ages in the observed mixtures, the set of model parameters is
redefined as follows

θ = {{v1(ω, l), ..., vN (ω, l)}ω,l, {R1(ω), ...,RN (ω)}ω}.
(10)

3. PROPOSED ALGORITHM

The computation of R̃cn(ω, l) in (7) can be modified in order
to include additional information about the local correlation
between propagation channels, which often increases the ac-
curacy of estimation as

R̃cn(ω, l) = R̂cn(ω, l) + (I−Gn(ω, l))Σcn(ω, l), (11)

where R̂cn
(ω, l) is the empirical covariance matrix of source

spatial images which is obtained such as

R̂cn(ω, l) =

∑
ω̃,l̃ γ(ω̃ − ω, l̃ − l)c̃n(ω̃, l̃)c̃Hn (ω̃, l̃)∑

ω̃,l̃ γ(ω̃ − ω, l̃ − l)
, (12)

where γ is a bi-dimensional window describing the shape of
neighbourhood. By substitution, up to a constant, the min-
imization function in (8) can be expressed in terms of the
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parameters of the spatial covariance decomposition in (9) as
follows

ξ(θ) =
∑
ω,l,n

tr(vn
−1(ω, l)Rn

−1(ω)R̃cn
(ω, l)). (13)

The set θ can be estimated in a blind scenario as in [8], or in an
informed scenario as in [16]. Following the second scenario,
as we will see later, in this work we mitigate a weakness point
in [16]. On the other side, R̃cn(ω, l) is a matrix with a high
condition number (the ratio of the largest singular value to the
smallest one). Hence by computing the singular value decom-
position (SVD), the matrix can be approximately represented
by its largest singular value σn1(ω, l) such as

R̃cn(ω, l) ≈ σn1(ω, l)An1(ω, l), (14)

where An1(ω, l) is an M ×M unitary matrix associated with
σn1(ω, l). Accordingly, the minimization problem in (13) can
be respecified as

ξ(θ) =
∑
ω,l,n

tr(vn
−1(ω, l)Rn

−1(ω)σn1(ω, l)An1(ω, l)).

(15)
Considering the minimization problem in (15), in these sense
of ML, if the source variance is estimated as [16]

vn(ω, l) = σn1(ω, l), (16)

the spatial covariance matrix can be obtained as follows

Rn(ω) =
1

L

∑
l

R̃cn
(ω, l)

vn(ω, l)
. (17)

The estimation step can be extended by factorizing both abso-
lute information of the numerator and the denominator by ap-
plying non-negative matrix factorization in a semi-supervised
scenario. The weakness point in [16] is that the factorization
is performed using the same pre-trained spectral basis vector.
As a result, important absolute information is lost from one
frequency to another. To mitigate this weakness, in this work,
the estimated source variance vn(ω, l) is decomposed using
the pre-trained spectral basis vector, and the absolute value of
the matrix R̃cn

(ω, l) is decomposed using weighted copies of
the pre-trained spectral basis vector. Accordingly, as we will
see later, the matrix Rn(ω) is estimated using both absolute
information in the factorization domain and phase informa-
tion in the time-frequency domain.

3.1. Estimation of the spatial covariance matrix

For clean training audio signals of the n-th source, the power
spectra of several signal utterances are concatenated in one
matrix. The spectral basis matrix Un = [uT

n (ω)]Ω×K is
extracted using the multiplicative update rule of minimizing
the Kullback-Leibler (KL) divergence [13], where un(ω) is a

spectral basis vector of length K. The n-th estimated source
power spectrum Vn = [vn(ω, l)]Ω×L in (16) can be fac-
torized using Un to compute a coefficient matrix Wn =
[wn(l)]K×L that contains time-varying weight vectors wn(l)
each of length K. Given un(ω), the estimated source vari-
ance vn(ω, l) can be represented in the factorization domain
as follows

vn(ω, l) = uT
n (ω)wn(l). (18)

The (m1,m2) coefficient of Rn(ω) can be represented in
terms of the (m1,m2) coefficient of R̃cn

(ω, l) as

rm1m2
n (ω) =

1

L

∑
l

r̃m1m2
cn

(ω, l)

vn(ω, l)
. (19)

Let us factorize the absolute value of r̃m1m2
cn

(ω, l) using a
time-varying vector hn(ω, l) of length K that is called the
weighted spectral vector, as follows

rm1m2
n (ω) =

1

L

∑
l

hT
n (ω, l)qm1m2

cn
(l)

vn(ω, l)
6 r̃m1m2

cn
(ω, l), (20)

where qm1m2
cn

(l) is the (m1,m2) coefficient vector of the
absolute value of r̃m1m2

cn
(ω, l), and 6 r̃m1m2

cn
(ω, l) is the

phase information of r̃m1m2
cn

(ω, l). Let us describe the vector
hn(ω, l) as follows

hT
n (ω, l) = vn(ω, l)wT

n (l). (21)

Accordingly, the (m1,m2) coefficient of the matrix Rn(ω) in
(20) is estimated as

rm1m2
n (ω) =

1

L

∑
l

wT
n (l)qm1m2

cn
(l)6 r̃m1m2

cn
(ω, l). (22)

Then the estimated rm1m2
n (ω) coefficients,m1,m2= 1, ...,M

are arranged in the matrix Rn(ω) that is normalized using
its largest singular value. On the other hand, regarding the
equations (18) and (21), the weighted spectral vector hn(ω, l)
is represented in terms of the spectral basis vector un(ω) as

hT
n (ω, l) = uT

n (ω)[wn(l)wT
n (l)], (23)

where the weight [wn(l)wT
n (l)] is the outer-product of the

vector wn(l) and its transposition.

4. EXPERIMENTAL RESULTS

A room with size 4.45× 3.35× 2.5 meters and an array of 2
omnidirectional microphones spaced of 0.2m are considered.
The microphones are located in the middle of the room and
are at the same height (i.e., 1.4m) of three given sources. The
distance from each source to the mid point between the two
microphones is 1m. The direction of arrivals of the sources in
the observed mixtures are 35, 90, and 145 degrees. Synthetic
room impulse responses (RIRs) are simulated through ISM
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[19] with a sampling frequency of 16 kHz for three reverber-
ation times: T60 = 200, 350, or 500 ms. Six Italian speakers
(3 males and 3 females) are considered as audio sources. Each
speaker uttered 20 sentences, of average length 8.75 s. The
clean speech signals are divided into 3 speech signals of test
data and 17 of training data to train un(ω), n = 1, 2, ..., N .
5 male-female combinations of mixtures of N = 3 speech
sources are generated, which corresponds to a total of 15 test
mixtures for each T60. The discrete time-frequency represen-
tation of the mixtures x(ω, l) is obtained through STFT with
a Hanning analysis window of length 128 ms (or 2048 sam-
ples), with a shift of 64 ms (L = 137). The window γ for the
computation of the empirical covariance matrix of the source
images in (12) is a Hanning window of size 3 × 3. Using
the Kullback-Leibler (KL) divergence and applying the mul-
tiplicative update rule [13], the training power spectra were
factorized with the number of spectral basis K equals 12.

The separation performance was evaluated via the signal-
to-distortion ratio (SDR), source image-to-spatial distortion
ratio (ISR), signal-to-interference ratio (SIR), and source-to-
artifact ratio (SAR) criteria in decibels (dBs) [20], which
account for overall distortion, target distortion, residual
crosstalk, and musical noise, respectively. To initialize the
source spatial images c̃n(ω, l), the time-frequency points of
the observed mixture x(ω, l) are assigned to clusters repre-
senting each source signal. The time difference of arrival
(TDOA) of each source signal is estimated as in [21]. Given
the estimated TDOAs of multiple source signals, the time-
frequency points of the observed mixture are clustered into
multiple clusters each corresponds to a source signal. The
clustering is performed by minimizing the error between
steering vectors of the estimated TDOAs and the phase dif-
ferences of time-frequency points of x(ω, l).

Table 1 shows comparison results of the separation per-
formance. The proposed algorithm is denoted as weighted
spectral bases (WSB). Source separation using NMF that was
proposed in [16] is denoted as (NMF). In both algorithms, the
separation system is fed by pre-trained source spectral basis
matrices. The separation results of blind source separation us-
ing a full rank spatial covariance model proposed in [8] (ML),
and the blind initialization algorithm using the estimated time
difference of arrivals (TDOA) are reported in the table. The
results of the ideal binary masking algorithm (BM Ideal) [4]
and the ideal l0-norm minimization algorithm (l0-norm Ideal)
[6] are also reported, in order to verify the upper bound limits
of the separation performance.

The results show that the proposed algorithm outperforms
the blind algorithms and the one fed by spectral basis ma-
trices. From the reported results, it is obvious that having
source-based prior information can improve much the separa-
tion performance. Furthermore, by capturing the changes in
the amplitude values of the spatial covariance matrices from
one frequency to another, the proposed algorithm performs
better than the one in [16]. In comparison with the blind al-

Table 1. Comparison of the separation performance.

dB BM l0norm WSB NMF ML TDOA
Ideal Ideal Inf. Inf. Blind Blind

SDR 10.53 10.12 7.91 6.96 4.62 4.90
ISR 19.44 17.56 13.95 12.32 9.06 11.12
SIR 20.45 15.95 14.46 12.28 7.25 10.48
SAR 11.12 14.20 9.59 10.22 8.30 7.27

Reverberation time = 200 ms
SDR 10.02 7.80 5.70 4.65 3.56 3.01
ISR 18.70 13.63 11.32 9.38 7.30 8.50
SIR 19.73 13.06 11.44 8.21 5.38 6.68
SAR 10.61 10.03 8.53 9.90 7.93 6.64

Reverberation time = 350 ms
SDR 9.57 6.30 4.47 3.73 2.48 2.30
ISR 18.08 11.57 10.14 8.38 5.90 7.51
SIR 19.11 11.07 9.56 6.36 3.36 4.87
SAR 10.15 8.59 8.01 9.69 7.41 6.24

Reverberation time = 500 ms

gorithms, in environments with low reverberation (T60 = 200
ms), we could gain about 3 dBs of SDR over the best per-
forming one. The performance gain decreases as the mixing
environments become more reverberant. In environments
with high reverberation (T60 = 500 ms), we could gain
around 2 dBs. On the other side, comparing to the one that is
fed by spectral basis matrices (NMF), we could gain on the
average around 1 dB in all the tested mixing environments.

5. CONCLUSION

This paper presents a method to estimate the model parame-
ters of local Gaussian model based audio source separation.
The model is parametrized by source variances and spatial
covariance matrices. Spectral basis matrices trained on a set
of training power spectra of source signals are assumed to be
available. The matrices are obtained by factorizing the spec-
tra applying nonnegative matrix factorization by minimizing
the Kullback-Leibler (KL) divergence using multiplicative
update rules. The source variances are estimated by apply-
ing singular value decomposition, and the spatial covariance
matrices are estimated applying semi-supervised nonnegative
matrix factorization. By building weighted basis matrices
from vectors of the trained spectral matrices, the spatial co-
variance matrices are estimated using both the trained and
weighted matrices. Comparing to blind source separation
algorithms, using the proposed algorithm, we can gain be-
tween 3 and 2 dBs of SDR in environments with low and high
reverberation, respectively. Furthermore, the proposed algo-
rithm outperforms an algorithm informed by the trained basis
matrices by around 1 dB in all the mixing environments.
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