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Abstract—We introduce a highly efficient online nonlinear re-
gression algorithm. We process the data in a truly online manner
such that no storage is needed, i.e., the data is discarded after
used. For nonlinear modeling we use a hierarchical piecewise
linear approach based on the notion of decision trees, where the
regressor space is adaptively partitioned based directly on the
performance. As the first time in the literature, we learn both the
piecewise linear partitioning of the regressor space as well as the
linear models in each region using highly effective second order
methods, i.e., Newton-Raphson Methods. Hence, we avoid the well
known over fitting issues and achieve substantial performance
compared to the state of the art. We demonstrate our gains over
the well known benchmark data sets and provide performance
results in an individual sequence manner guaranteed to hold
without any statistical assumptions.

Index Terms—Hierarchical tree, big data, online learning,
piecewise linear regression, Newton method.

I. INTRODUCTION

Nonlinear regression problem is one of the most important

topics in the machine learning and signal processing literatures

and arises in several different applications such as signal

modeling [1], [2], financial market [3] and trend analyses

[4], intrusion detection [5] and recommendation [6]. However,

the traditional regression techniques show less than adequate

performance in real-life applications having big data since (1)

data acquired from diverse sources are too large in size to be

efficiently processed or stored by conventional signal process-

ing and machine learning methods [7]; (2) the performance

of the conventional methods is further impaired by the highly

variable properties, structure and quality of data acquired at

high speeds [7].

In this context, to accommodate these problems, we intro-

duce online regression algorithms that process the data in

an online manner, i.e., instantly, without any storage, and

then discard the data after using and learning [8]. Hence our

methods can constantly adapt to the changing statistics or

quality of the data so that they can be robust and prone to

variations and uncertainties [8]. From a unified point of view,

in such problems, we sequentially observe a real valued vector

sequence x1,x2, . . . and produce a decision (or an action) yt
at each time t based on the past x1,x2, . . . ,xt. After the

desired output yt is revealed, we suffer a loss and our goal is

to minimize the accumulated (and possibly weighted) loss as

much as possible while using a limited amount of information

from the past.

To this end, for nonlinear regression we use a hierarchi-

cal piecewise linear model based on the notion of decision

trees, where the space of the regressor vectors, x1,x2, . . ., is

adaptively partitioned and continuously optimized in order to

enhance the performance [2], [9]. We note that the piecewise

linear models are extensively used in the signal processing

literature to mitigate the overtraining issues that arise due to

using nonlinear models [2]. However their performance in real

life applications are less than adequate since their successful

application highly depends on the accurate selection of the

piecewise regions that correctly model the underlying data

[10]. Clearly, such a goal is impossible in an online setting

since either the best partition is not known, i.e., the data arrives

sequentially, or in real life applications the statistics of the

data and the best selection of the regions change in time. To

this end, as the first time in the literature, we learn both the

piecewise linear partitioning of the regressor space as well as

the linear models in each region using highly effective second

order methods, i.e., Newton-Raphson Methods [11]. Hence, we

avoid the well known over fitting issues by using piecewise

linear models, however, since both the region boundaries as

well as the linear models in each region are trained using

the second order methods we achieve substantial performance

compared to the state of the art [11]. We demonstrate our gains

over the well known benchmark data sets extensively used in

the machine learning literature. We also provide theoretical

performance results in an individual sequence manner that are

guaranteed to hold without any statistical assumptions [12]. In

this sense, the introduced algorithm addresses computational

complexity issues widely encountered in big data application

while providing superior guaranteed performance in a strong

deterministic sense.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and represented

by lower case boldface letters. For matrices, we use upper

case boldface letters. The ℓ2-norm of a vector x is given by
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regions are also updated to reach the best partitioning. We

use the second order algorithms, e.g. Online Newton Step

[13], to update both separator functions and region weights.

To accomplish this, the weight vector assigned to the region

{00} is updated as

wt+1,00 = wt,00 −
1

β
A

−1
t ∇e

2
t

= wt,00 +
2

β
etpt,Ωpt,0A

−1
t xt

(3)

where β is the step size, ∇ is the gradient operator w.r.t. wt,00

and At is an m×m matrix defined as

At =
t

∑

i=1

∇i∇
T
i + ǫIm (4)

where ǫ > 0 is used to ensure that At is positive definite, i.e.,

At > 0, and invertible. Right selection of ǫ is discussed in

[13]. Here, the matrix At is related to the Hessian of the error

function, implying that the update rule uses the second order

information [13].

Region boundaries are also updated in the same manner.

For example, the direction vector specifying the separation

function pt,Ω in Fig. 1, is updated as

nt+1,Ω = nt,Ω −
1

η
A

−1
t ∇e

2
t

= nt,Ω +
2

η
et[pt,0ŷt,00 + (1− pt,0)ŷt,01

− pt,1ŷt,10 − (1− pt,1)ŷt,11]A
−1
t

∂pt,Ω
∂nt,Ω

(5)

where η is the step size to be determined, ∇ is the gradient

operator w.r.t. nt,Ω and At is given in (4). Partial derivative

of the separation function pt,Ω w.r.t. nt,Ω is given by

∂pt,Ω
∂nt,Ω

=
xte

−xT
t nt,Ω

(1 + e−x
T
t nt,Ω)2

. (6)

All separation functions are updated in the same manner. The

final estimate of this algorithm is given by the following

generic formula

ŷt =
2d
∑

j=1

ψ̂t,Rd(j) (7)

where Rd is the set of all region labels with length d in the

increasing order, i.e., R1 = {0, 1} or R2 = {00, 01, 10, 11},
and Rd(j) represents the jth entry of the set Rd. Weighted

estimate of each region is found as

ψ̂t,r = ŷt,r

d
∏

i=1

p̂t,ri (8)

where ri denotes the first i−1 character of label r as a string,

i.e., r = {0101}, r3 = {01} and r1 = {Ω}, which is the empty

string {Ω}. Here, p̂t,ri is defined as

p̂t,ri =

{

pt,ri , r(i) = 0

1− pt,ri , r(i) = 1
. (9)

We reformulate the update rules defined in (3) and (5) and

present generic expressions for both regression weights and

region boundaries. The generic update rule for the regression

weights are given by

wt+1,r = wt,r −
1

β
A

−1
t ∇e

2
t

= wt,r +
2

β
etA

−1
t

∂ŷt
∂wt,r

= wt,r +
2

β
etA

−1
t

2d
∑

j=1

∂

(

ŷt,Rd(j)

d
∏

i=1

p̂t,Rd(j)i

)

∂wt,r

= wt,r +
2

β
etA

−1
t xt

d
∏

i=1

p̂t,ri

(10)

and the region boundaries are updated as

nt+1,k = nt,k −
1

η
A

−1
t ∇e

2
t

= nt,k +
2

η
etA

−1
t

∂ŷt
∂pt,k

∂pt,k
∂nt,k

= nt,k +
2

η
etA

−1
t

[ 2d
∑

j=1

∂ψ̂t,Rd(j)

∂pt,k

]

∂pt,k
∂nt,k

= nt,k

+
2

η
etA

−1
t

[ 2d
∑

j=1

ŷt,Rd(j)

∂

(

d
∏

i=1

p̂t,Rd(j)i

)

∂pt,k

]

∂pt,k
∂nt,k

= nt,k

+
2

η
etA

−1
t

[ 2d−ℓ(k)
∑

j=1

ŷt,ŕ(−1)
ŕ(ℓ(k)+1)

d
∏

i=1
ŕi 6=k

p̂t,ŕi

]

∂pt,k
∂nt,k

(11)

where ŕ is the label string generated by concatenating separa-

tion function identifier k and the label kept in jth entry of the

set R(d−ℓ(k)), i.e., ŕ = [k;R(d−ℓ(k))(j)] and ℓ(k) represents

the length of binary string k, e.g. ℓ(01) = 2. Since we use the

logistic regression function, we can use the following equality

to calculate the partial derivative of pt,k w.r.t. nt,k,

∂pt,k
∂nt,k

= pt,k(1− pt,k)xt. (12)

In order to avoid taking the inverse of an m ×m matrix,

At, at each iteration in (10) and (11), we generate a recursive

formula using matrix inversion lemma for A−1
t given as

A
−1
t = A

−1
t−1 −

A
−1
t−1∇t∇

T
t A

−1
t−1

1 +∇T
t A

−1
t−1∇t

(13)

where ∇t , ∇e2t w.r.t. the corresponding variable. The

complete algorithm is given in Algorithm 1 with all updates

and initializations.
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Algorithm 1: Finest Model Partitioning

1 A−1
0 ←

1

ǫ
Im;

2 for t← 1 to n do

3 ŷt ← 0;

4 for j ← 1 to 2d do

5 r ← Rd(j);
6 ŷt,r ← w

T
t,rxt;

7 ψ̂t,r ← ŷt,r;

8 γt,r ← 1;

9 for i← 1 to d do

10 if r(i)← 0 then

11 p̂t,ri ← pt,ri ;
12 else

13 p̂t,ri ← 1− pt,ri ;

14 ψ̂t,r ← ψ̂t,rp̂t,ri ;
15 γt,r ← γt,rp̂t,ri ;

16 ŷt ← ŷt + ψ̂t,r;

17 for i← 1 to 2d − 1 do

18 k ← P (i) ;

19 for j ← 1 to 2d−ℓ(k) do

20 r ← concat[k : Rd−ℓ(k)(j)];

21 αt,k ← (−1)r(ℓ(k)+1)(ψ̂t,r/p̂t,k);

22 et ← yt − ŷt;
23 for j ← 1 to 2d do

24 r ← Rd(j);
25 ∇t,r ← −2etγt,rxt;

26 A
−1
t,r ← A

−1
t−1,r −

A
−1
t−1∇t,r∇

T
t,rA

−1
t−1,r

1 +∇T
t,rA

−1
t−1,r∇t,r

;

27 wt+1,r ← wt,r −
1

β
A

−1
t,r∇t,r;

28 for i← 1 to 2d − 1 do

29 k ← P (i);
30 ∇t,k ← −2etαt,kpt,k(1− pt,k)xt;

31 A
−1
t,k ← A

−1
t−1,k −

A
−1
t−1,k∇t,k∇

T
t,kA

−1
t−1,k

1 +∇T
t,kA

−1
t−1,k∇t,k

;

32 nt+1,k ← nt,k −
1

η
A

−1
t,k∇t,k;

The constructed algorithm partitions the regressor space into

2d regions for the depth-d tree model. Hence, we perform

O(2d) weight update at each iteration. Suppose that the

regressor space is m-dimensional, i.e., xt ∈ ❘
m. For each

update, the proposed algorithm requires O(m2) multiplication

and addition resulting from a matrix-vector product, since we

apply second order update methods. Therefore, the resulting

complexity is given by O(m22d).

Theorem 1. Let {yt}t≥1 and {xt}t≥1 denote the randomly

chosen real-valued data sequences. If ‖∇(yt−ŷt,r)
2‖ ≤ G and

‖wt,r −wr‖
2 ≤ A2 conditions hold for some G,A > 0 and
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Fig. 2: Time accumulated error rates of the algorithms i) FMP, ii)
DAT, iii) VF, iv) FNF, v) EMFNF for the real benchmark data sets.

exp(−α(yt − ŷt,r)
2) is concave for α > 0, then the estimate

ŷt generated by following Algorithm 1, satisfies the following

logarithmic bound:

n
∑

t=1

(yt−ŷt,r)
2− min

wr∈❘m

n
∑

t=1

(yt−w
T
r xt)

2 ≤ 5

(

GA+
1

α

)

m log(n)

In Theorem 1, we emphasize that for the each region

estimate, the regret at iteration n has a logarithmic upper

bound. The proof of this theorem is accomplished by following

the similar steps given in [13].

IV. SIMULATIONS

In this section, we evaluate the performance of the proposed

algorithm. The first set of simulations involves the well known

real and synthetic benchmark data sets extensively used in the

machine learning literature. We then consider the regression

of a signal generated by a piecewise linear model whose par-

titions do not match the initial partitioning of the algorithms.

Throughout this section, ”FMP” represents Finest Model Par-

titioning algorithm, ”DAT” stands for Decision Adaptive Tree

[14], ”CTW” is used for Context Tree Weighting [10], ”GKR”

represents Gaussian-Kernel regressor [15], ”VF” represents

Volterra Filter [16], ”FNF” and ”EMFNF” stand for the Fourier

and Even Mirror Fourier Nonlinear Filter [17] respectively.

We first consider the regression of a benchmark real-life

problem that can be found in many data set repositories such

as: California Housing and Kinematics with 8-dimensional

regressor spaces and Elevators with 18-dimensional regressor

space [18]. For the California Housing problem, we set the

learning rates to 0.004 for FMP, 0.01 the DAT, 0.05 for the

VF, 0.005 for the FNF and the EMFNF. For the Kinematics

and Elevators data sets, the learning rates are set to 0.01

for the DAT, 0.01 for the VF, the FNF and the EMFNF

algorithms. For the FMP algorithm, it is set to 0.0625 for

the Kinematics and 0.03 for the Elevators data sets. Fig.

2 illustrates the normalized time accumulated error rates of

the stated algorithms. We emphasize that the proposed FMP

algorithm significantly outperforms the state of the art for all

the real life data sets given here.

We now consider the case where the desired data is gen-

erated by a piecewise linear model that mismatches with the

initial partitioning of the proposed algorithms. Specifically, we
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Fig. 3: Regression error performances for the mismatched partition-
ing case using piecewise linear model given by (14).

use the following piecewise linear model to generate the data

sequence,

ŷt =



















w
T
1 xt + υt ,xT

t n0 ≥ 0.5 and x
T
t n1 ≥ −0.5

w
T
2 xt + υt ,xT

t n0 ≥ 0.5 and x
T
t n1 < −0.5

w
T
2 xt + υt ,xT

t n0 < 0.5 and x
T
t n2 ≥ −0.5

w
T
1 xt + υt ,xT

t n0 < 0.5 and x
T
t n2 < −0.5

(14)

where w1 = [1, 1]T , w2 = [1,−1]T , n0 = [2,−1]T ,

n1 = [−1, 1]T and n2 = [2, 1]T . The feature vector xt =
[xt,1, xt,2]

T is composed of two jointly Gaussian processes

with [0, 0]T mean and I2 variance. υt is a sample taken from

a Gaussian process with zero mean and 0.1 variance. The gen-

erated data sequence is represented by ŷt. The learning rates

maximizing the performance of each algorithm are determined

as 0.04 for the FMP, 0.005 for the CTW and the FNF, 0.025

for the EMFNF and the VF, 0.5 for the GKR.

In Fig. 3, we demonstrate the normalized time accumulated

error performance of the proposed algorithms. We emphasize

that the CTW algorithm performs significantly worse, since

the partitions do not match. Besides, the adaptive algorithms,

FMP and DAT achieve considerably better performance, since

these algorithms update their partitions in accordance with

the data distribution. Fig. 3 exhibits that the FMP notably

outperforms its competitors and even the DAT algorithm, since

this algorithm exactly matches its partitioning to the partitions

of the piecewise linear model given in (14) using second order

update methods.

V. CONCLUDING REMARKS

In this paper, we introduce a highly efficient and effective

nonlinear regression algorithm for online learning problems

suitable for big data applications. We process only the cur-

rently available data for regression and then discard it, i.e.,

there is no need for storage. For nonlinear modeling, we

use piecewise linear models, where we partition the regressor

space using linear separators and fit linear regressors to each

partition. As the first time in the literature, we adaptively

update both the region boundaries and the linear regressors

in each region using the second order methods, i.e., Newton-

Raphson Methods. We illustrate that the proposed algorithm

attains outstanding performance compared to the state of art

even for the highly nonlinear data models. We also provide

the individual sequence results demonstrating the guaranteed

regret performance of the introduced algorithms without any

statistical assumptions.
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