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ABSTRACT
This paper presents a new algorithm for the joint restora-
tion of depth and intensity images constructed from the time-
correlated single-photon counting (TCSPC) measurement in
the limit of very few photon counts [1]. Under some justified
approximations, the restoration problem (regularized likeli-
hood) reduces to a convex formulation with respect to the pa-
rameters of interest. The first advantage of this formulation
is that it only processes the corrupted depth and intensity im-
ages obtained from preliminary estimation, without the need
for the use of full TCSPC waveforms. The second advantage
is its flexibility in being able to use different convex regular-
ization terms such as: total variation (TV); and sparsity of the
discrete cosine transform (DCT) coefficients. The estimation
problems are efficiently solved using the alternating direction
method of multipliers (ADMM) that presents good conver-
gence properties and thus a reduced computational cost. Re-
sults on single photon depth data from field trials show the
benefit of the proposed strategy that improves the quality of
the estimated depth and intensity images.

Index Terms— Lidar waveform, Poisson statistics, image
restoration, ADMM, total variation regularization.

1. INTRODUCTION

Reconstruction of 3-dimensional scenes is a challenging
problem encountered in many applications. For a given pixel,
the time-of-flight laser detection and ranging (Lidar) system
achieves this goal by emitting laser pulses and recording the
reflected signal [2]. Single-photon Lidar typically uses a
high repetition rate pulsed laser source in conjunction with a
single-photon detector. The single-photon approach is used
for its shot-noise limited sensitivity, and the temporal re-
sponse means that the surface-to-surface resolution can be of
millimeter scale. In single-photon Lidar, the recorded photon
event is stored in a timing histogram which is constructed over
a number of laser pulses. The time delay and the amplitude of
the histogram are related to the distance and reflectivity of the
observed object, respectively, which allows the construction
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of the 3D scene. In this paper, we consider the case when the
acquisition time or the laser source power are small relative to
the range of the target, which leads to a reduction in the num-
ber of detected photons per pixel. This problem can be solved
by improving the instrument components [3, 4] or by taking
a much longer time to acquire image data, which is rarely
suitable. To most efficiently use the available sparse photon
data, the alternative approach is to improve the processing of
the acquired signals using signal processing techniques [5–7].
The latter approach will be considered here to improve the
estimated depth and intensity (DI) images.

The first contribution of this paper is a new convex for-
mulation for the cost function with respect to (w.r.t.) the DI
images. Using the Poisson distribution of the observed photon
counts, and introducing some justified approximations lead to
a separable convex problem w.r.t. the parameters of interest.
The obtained formulation is expressed w.r.t. preliminary esti-
mates of the DI images which avoids the use of cumbersome
photon count histograms during the refinement process. The
resulting formulation can also be interpreted as an inpainting
problem, which is efficiently solved using well known regu-
larization terms such as total variation (TV) or the sparseness
of the discrete cosine transform (DCT) coefficients.

The second contribution of this paper is the derivation
of an estimation algorithm associated with the proposed cost
functions. The alternating direction method of multipliers
(ADMM) is used to solve the resulting problems by dividing
them into simpler sub-problems. More precisely, the ADMM
variant proposed in [8, 9] has been adapted to solve the pro-
posed formulations. The proposed algorithms are fast (since
they require simple operations) and show good convergence
properties.

The paper is organized as follows. Section 2 introduces
the observation model associated with the photon counts. The
proposed formulation for DI restoration and the estimation
algorithms are presented in Sections 3 and 4. Simulation re-
sults conducted using data acquired by an actual time-of-flight
scanning sensor are presented and discussed in Section 5. Fi-
nally, conclusions and future work are reported in Section 6.
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2. OBSERVATION MODEL

The Lidar observation yi,j,t , where (i, j) ∈ {1, · · · , Nr} ×
{1, · · · , Nc}, represents the number of photon counts within
the tth bin of the pixel (i, j). According to [6, 10], each pho-
ton count yi,j,t is assumed to be drawn from the Poisson dis-
tribution P (.) as follows

yi,j,t ∼ P (si,j,t) (1)
where

si,j,t = ri,jg0 (t− ti,j) + bi,j (2)

and ti,j ≥ 0 is the position of an object surface at a given
range from the sensor (related to the depth), ri,j ≥ 0 is the
intensity of the target, bi,j ≥ 0 is a constant denoting the
background and dark photon level, and g0 denotes the system
impulse response assumed to be known from the calibration
step. Assuming independence between the observed pixels
leads to the joint likelihood

P (Y |t, r, b) =
∏
i,j

T∏
t=1

s
yi,j,t
i,j,t

yi,j,t!
exp−si,j,t (3)

where t, r, b are N × 1 vectors gathering the elements ti,j ,
ri,j , bi,j ,∀i,∀j (in lexicographic order), with N = NrNc,
and T is the total number of bins.

3. PROBLEM FORMULATION

3.1. Estimation of the depth and intensity images

Using the Lidar waveforms [Y ]i,j,t = yi,j,t, the depth and
intensity images of a given target are obtained by estimating
ti,j and ri,j , respectively. This goal can be achieved by max-
imizing the likelihood (3) w.r.t. ti,j , ri,j , bi,j , or equivalently
by minimizing the negative log-likelihood given by (after re-
moving unnecessary constants)

L = − log [P (Y |t, r, b)] =
∑
i,j

Li,j + cst (4)

where
Li,j =

T∑
t=1

[si,j,t − yi,j,t log (si,j,t)]. (5)

To simplify the obtained cost function (5), the classical esti-
mation approach (see [6] for more details) assumes the ab-
sence of the background level, i.e., bi,j = 0. In this pa-
per, we adopt this simplification and (in addition) assume a
Gaussian approximation for the instrument impulse response

g0 (t− ti,j) = c1 exp−
(t−ti,j)

2

2σ2 as in [11], and that c2 =∑T
t=1 g0 (t− ti,j) is a constant for all realistic ti,j (which is

justified since T = 18000 bins in Section 5 is higher than
σ ≈ 5 bins and the Gaussian is generally located in the cen-
ter of the interval [0, T ]). Under these assumptions, the cost
function reduces to (after removing unnecessary constants)

Li,j = ri,j−rML
i,j

[
log (ri,j)−

(
ti,j − tML

i,j

)2
2σ2

]
+iR+ (ri,j , ti,j)

(6)

where iR+
(x, y) means x ≥ 0 and y ≥ 0, tML

i,j =
(
∑T
t=1 tyi,j,t)

(
∑T
t=1 yi,j,t)

and rML
i,j = 1

c2

(∑T
t=1 yi,j,t

)
are the maximum of the simpli-

fied likelihood with respect to ti,j and ri,j . The cost function,
(6), obtained is interesting for two reasons. First, it does not
include the Lidar observation terms yi,j,t explicitly, which
means that our formulation considers only the two images
rML
i,j and tML

i,j instead of the Nr × Nc × T matrix yi,j,t. Sec-
ond, it is a sum of convex functions w.r.t. ti,j and ri,j . Note
finally that, due to the considered assumptions, the estimates
tML
i,j and rML

i,j are of poor quality especially in the limit of
very low photon counts. The next section introduces the
regularization used to improve the estimated images from (6).

3.2. Image restoration

The quality of the depth and intensity images depends on two
factors. The first is the acquisition time per pixel that needs to
be high enough to provide an acceptable number of detected
photons. However, this may lead to a long acquisition time
which is not suitable for real applications (such as moving tar-
gets). The second is due to the assumptions used to estimate
the images. Considerable effort is now devoted to reduce the
acquisition and processing time of these images while keep-
ing a good image quality. From a Bayesian perspective, this
goal can be achieved by adding a priori knowledge about the
images of interest to the likelihood (6). From an optimization
perspective, the prior knowledge is equivalent to an additional
regularization term φ (t, r) as described in the following sec-
tions.

3.2.1. Inpainting

A reduced number of photon counts is captured by the sensor
when using a very low acquisition time. Under these condi-
tions, many pixels might be empty (

∑T
t=1 yi,j,t = 0,∀t) lead-

ing to some pixels where DI estimation is impossible without
additional information. This can be interpreted as an image
inpainting problem that is accounted for by considering the
following cost function

C (t, r) = L (Kt,Kr) + φ (t, r) (7)

where K is an Q × N binary matrix that contains a single
non-zero value on each line to model the loss of some image
pixels and Q is the number of non-empty pixels. Due to its
particular structure, this matrix satisfies KKT = IQ, where
IQ is the Q×Q identity matrix.

3.2.2. Regularization

This paper studies two regularization terms to improve the
image estimates. The first is the total variation (TV) regular-
ization that assumes spatially correlated pixels (a four neigh-
borhood structure is considered in this paper). This prior is
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of great interest in the image processing community since it
allows for noise reduction while preserving the edges. The
cost function is given by

CTV (t, r) = L (Kt,Kr) + τ1TV (t) + τ2TV (r) (8)

where τ1, τ2 are the regularization parameters and TV(x) =∑N
n=1

√
(∆h

nx)2 + (∆v
nx)2, where ∆h

n and ∆v
n are the hori-

zontal and vertical first order differences at pixel n. The sec-
ond regularization assumes the sparseness of the vectors Dt
and Dr, where D represents the discrete cosine transform
(DCT) or contains in its column a wavelet basis. In this pa-
per, we consider the sparseness of the DCT coefficients, i.e.,

CDCT (t, r) = L (Kt,Kr) + τ3||Dt||1 + τ4||Dr||1 (9)

where τ3, τ4 are the regularization parameters,D is theN×N
matrix achieving the 2 dimensions-DCT transformation and
||.||1 is the sparsity imposing `1 norm.

4. ESTIMATION ALGORITHM

This section introduces the ADMM algorithms used to mini-
mize (8) and (9). The first section introduces a general formu-
lation of a variant of the ADMM algorithm. The later sections
adapt this algorithm to the studied optimization problems.
4.1. General formulation

Consider the optimization problem
argmin

z
C (z) = argmin

z

J∑
j=1

gj

(
H(j)z

)
(10)

where z ∈ Rd, gj : Rpj → R are closed, proper, convex
functions, and H(j) ∈ Rpj×d are arbitrary matrices. After
denoting u(j) = H(j)z ∈ Rpj and introducing the auxiliary
variable d(j) ∈ Rpj , the authors in [8] introduced the ADMM
variant summarized in Algo. 1 to solve (10). This algorithm

converges when the matrix M =

[∑J
j=1

(
H(j)

)>
H(j)

]
has full rank, and the optimization problems in line 10 are
solved exactly or if their sequences of errors are absolutely
summable [8].

4.2. Restoration with TV regularization

Considering the 2N × 1 vector z = [tT , rT ]T = [zT1 , z
T
2 ]T ,

the cost function (8) can be written as in (10) with

g1

(
u
(1)
i

)
= u

(1)
i − r

ML
i log

(
u
(1)
i

)
, H(1) = [0N ,K]

g2

(
u
(2)
i

)
=

(
u
(2)
i − tML

i

)2
2 σ2

rML
i

, H(2) = [K,0N ]

g3

(
u(3)

)
= τ1TV(z1) + τ2TV(z2), H(3) = I2N

g4

(
u(4)

)
= iRN+

(
u(4)

)
, H(4) = [IN ,0N ]

(11)

Algorithm 1 ADMM variant for (10)
1: Initialization
2: Initialize u

(j)
0 ,d

(j)
0 ,∀j, µ. Set k ← 0, conv← 0

3: while conv= 0 do
4: for j=1:J do
5: ξ

(j)
k ← u

(j)
k + d

(j)
k ,

6: end for
7: zk+1 ←M−1∑J

j=1

(
H(j)

)>
ξ
(j)
k ,

8: for j=1:J do
9: v

(j)
k ←H(j)zk+1 − d

(j)
k ,

10: u
(j)
k+1 ← argmin

s

µ
2 ||s− v

(j)
k ||2 + gj (s),

11: end for
12: for j=1:J do
13: d

(j)
k+1 ← d

(j)
k −

(
H(j)zk+1 − u

(j)
k+1

)
,

14: end for
15: k = k + 1
16: end while

where u(3) = z and M reduces to a full rank diagonal ma-
trix (fast to inverse). The optimization problems in line (10)
are straightforward for j = 1, 2 and 3 and lead to exact so-
lutions. As suggested in [8, 9], the TV problem in line (10)
is solved using the iterative Chambolles algorithm [12]. This
algorithm gives a sequence of errors absolutely summable (as
empirically shown in [8,9]) which ensures the convergence of
the ADMM algorithm. The resulting algorithm is denoted by
RDI-TV for restoration of DI images using TV.

4.3. Restoration with DCT regularization

Similarly, the cost function (9) can be written as in (10) with
the same g1, g2, g4 and H(1),H(2),H(4) as in (11). How-
ever, we have g3

(
u(3)

)
= τ3||z1||1 + τ4||z2||1, H(3) =[

D 0N
0N D

]
, Using DTD = IN , leads to the same diag-

onal expression for M as in Section 4.2, which is easily in-
vertible. The optimization problems in line (10) are straight-
forward and lead to exact solutions, which ensure the conver-
gence of the proposed RDI-DCT algorithm. Note finally that
the proposed RDI algorithms differ from [4,6,7] by consider-
ing a different cost function (a simplified convex formulation)
and estimation algorithm (based on the ADMM).

5. SIMULATION RESULTS

This section evaluates the performance of the proposed
restoration algorithms when considering six real images
(142 × 142 pixels) of a life-sized polystyrene head, acquired
at a distance of 40m. The images were acquired in November
2014 on the Edinburgh Campus of Heriot-Watt University,
using a time-of-flight scanning sensor, based on TCSPC. The
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Table 1. Processing time (in seconds).
Acquisition time per pixel (ms)

0.06 0.3 0.6 3 6 30
RDI-TV 50 25 74 14 7 4

RDI-DCT 7 8 8 5 4 1
MCMC 6780 7380 7860 9120 11820 20820

transceiver system and data acquisition hardware used for this
work are broadly similar to that described in [3, 5] (see also
[6] for more details regarding the system parameters). The
images considered have different acquisition time per pixel,
i.e., 30ms, 6ms, 3ms, 600µs, 300µs and 60µs, where a long
acquisition time leads to a better image quality. The proposed
RDI algorithms are compared with the classical approach, and
the MCMC based algorithm (both described in [6]) and with
the BM3D algorithm [13]. The RDI algorithms require the
regularization parameters to be set. In this study, we provide
the best performance (in terms of RSNR) of these algorithms
when testing three values centered around the following in-
terval (τ1, τ2, τ3, τ4) = (0.0025/c2, 0.22, 0.001/c2, 0.22)
(we tested the doubles and the halves of these values). The
restoration quality was evaluated using the reconstruction
signal-to-noise ratio, RSNR = 10 log10

(
||x||2
||x−x̂||2

)
, where

x is the reference depth or intensity image estimated with
the classical approach for 30ms, x̂ is the restored image and
||x||2 denotes the `2 norm given by xTx. Table 2 shows
the obtained RSNR with the considered algorithms. The
proposed RDI algorithms outperform the classical approach
(in all cases) and the BM3D especially for the depth images
and intensity images with high acquisition time. Images with
many missing pixels (low acquisition time) are better pro-
cessed by RDI-TV than RDI-DCT, while the latter shows
good results for images with an acquisition time ≥ 3ms.
Overall, the MCMC approach provides good performance,
however, this is achieved at a price of a higher processing
time, as highlighted in Table 1. Note that BM3D provides
poor results for the depth images, however, it shows good
performance for the intensity images with low acquisition
time. Finally, Figs. 1 and 2 show examples of the obtained
depth and intensity images with the different algorithms for
the 0.3ms image. The MCMC algorithm generally presents
the best visual results while RDI-TV and RDI-DCT clearly
improve the performance of the classical approach.

6. CONCLUSIONS

This paper has presented a simplified formulation and a new
algorithm for the joint restoration of depth and intensity im-
ages in the limit of very low photon counts. The proposed
formulation reduced to a sum of convex functions suitable for
the convergence of optimization techniques. The restoration
of the two images (including the reconstruction of the missing

pixels) was achieved by considering two regularization terms,
the TV and the sparseness of the DCT coefficients. The result-
ing problems were solved using ADMM that has good conver-
gence properties. The proposed formulation and algorithms
showed good performance when processing real images in
terms of the quality of the restored images and the compu-
tational cost. Future work includes the study of a joint regu-
larization term for the depth and intensity images and the es-
timation of the RDI regularization parameters. Generalizing
the algorithm to under-water images (where range-dependent
signal attenuation occurs) is also an interesting issue which is
worthy of investigation.
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Table 2. RSNR (in dB) of the restored depth and intensity images w.r.t. the acquisition time.
Acquisition time per pixel (ms)

0.06 0.3 0.6 3 6 30

Depth
Class 3.36 11.93 18.56 37.13 38.42 -

BM3D 3.72 14.72 24.79 37.11 37.43 38.01

images
RDI-TV 30.54 35.25 36.23 38.72 39.09 70.24

RDI-DCT 27.74 32.06 34.31 38.57 39.50 82.50
MCMC 23.48 34.75 37.13 38.09 38.40 42.75

Intensity
Class 0.01 5.19 7.01 9.44 10.66 -

BM3D 8.03 9.36 9.12 9.40 9.31 9.51

images
RDI-TV 2.0 9.05 10.0 11.32 12.17 14.94

RDI-DCT 1.41 8.45 9.56 11.17 12.09 17.54
MCMC 7.04 8.70 9.26 10.03 10.98 34.72

Fig. 1. Depth maps (142×142 pixels) of a life-sized polystyrene head produced using the 0.3ms per pixel image in conjunction
with the algorithms considered. (top-left) reference depth, (top-middle) classical approach, (top-right) BM3D, (bottom-left)
proposed RDI-TV, (bottom-middle) proposed RDI-DCT, and (bottom-right) MCMC approach [6].

Fig. 2. Intensity maps (142× 142 pixels) of a life-sized polystyrene head produced using the 0.3ms per pixel image in conjunc-
tion with the algorithms considered. (top-left) reference depth, (top-middle) classical approach, (top-right) BM3D, (bottom-left)
proposed RDI-TV, (bottom-middle) proposed RDI-DCT, and (bottom-right) MCMC approach [6].
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