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Abstract—Even though improvements in the speaker verifi-
cation (SV) technology with i-vectors increased their real-life
deployment, their vulnerability to spoofing attacks is a major
concern. Here, we investigated the effectiveness of spoofing
attacks with statistical speech synthesis systems using limited
amount of adaptation data and additive noise. Experiment results
show that effective spoofing is possible using limited adaptation
data. Moreover, the attacks get substantially more effective when
noise is intentionally added to synthetic speech. Training the
SV system with matched noise conditions does not alleviate the
problem. We propose a synthetic speech detector (SSD) that uses
session differences in i-vectors for counterspoofing. The proposed
SSD had less than 0.5% total error rate in most cases for the
matched noise conditions. For the mismatched noise conditions,
missed detection rate further decreased but total error increased
which indicates that some calibration is needed for mismatched
noise conditions.

Index Terms—spoofing attacks, speaker verification, statistical
speech synthesis, speaker adaptation, synthetic speech detection

I. INTRODUCTION

There has been substantial progress in the speaker verifica-
tion (SV) field in recent years [1]. I-vector based approach
in particular received significant attention due to its high
performance. However, despite the success of the i-vector
method in verification, it has been shown to be vulnerable
to spoofing attacks [2], [3], [4]. Some of the prior methods
for spoofing the SV systems and detection of spoofing attacks
are described below.

In [5], GMM-based voice transformation is proposed using
parallel data. To increase the effectiveness of the attacks, seg-
ments of speech that get high scores from the voice verification
system are repeated. Two countermeasures are also proposed
in [5]. In one approach, distributions of Gaussian components
are used to detect repetitions of Gaussians in speech. In a
second approach, automatic voice quality assessment tools are
used to detect synthetic speech.

If a speech vocoder is used during an attack, phase spectrum
can be used to detect the synthetic speech as proposed in
[6]. However, in many speech applications, only the spectral
magnitude features are transmitted to avoid increasing the
network traffic and minimize the delay. Our focus here is
detection of attacks when only the Mel-frequency Cepstral
coefficients (MFCCs) are available at the detector.
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Modified speech detection performance when the detector
is trained with different kind of voice conversion techniques
is reported in [6]. Modulation of spectral features over longer
durations is investigated in [7]. Longer duration modulation
features were found to be complementary to short-time fea-
tures.

Voice conversion methods typically require significant
amount of parallel data to be successful. However, in many
practical cases, the attacker is required to attack the verification
system with very limited amount of adaptation data to be
able to spoof a large number of accounts. Statistical speech
synthesis (SSS) systems are particularly suitable for such
attacks since adaptation with a couple of utterances are feasible
in those systems [8], [9], [10]. Therefore, we focused on
the SSS systems here. Experiment results show that effective
spoofing is possible with only a couple of utterances in clean
training and test conditions.

Even though SSS is effective at spoofing, synthetic speech
with SSS can be detected by exploiting its overly smooth
nature [11]. Here, we investigated the possibility of attacking
the system by intentionally adding noise to synthetic speech
with the hypothesis that noise can reduce the smoothness of
synthetic speech and make it more difficult to detect. Noises
at and above 10dB are added to synthetic speech because
utterances at those signal to noise ratio (SNR) values are
expected to be common in real-life. We have found that the
attacks get substantially more effective when noise is added to
synthetic speech even when the verification system is trained
with matched noise conditions.

Besides showing the effectiveness of the method for attack,
we propose a novel and simple synthetic speech detector that
uses session differences in i-vectors to detect between syn-
thetic speech. We then experimentally show that the proposed
detector has error rates less than 0.5% in all test conditions. To
make the problem more challenging, we used more advanced
techniques such as global variance (GV) [12] and STRAIGHT
vocoding [13] on the attacker side but not on the detection side.
Even when there is such mismatch between training and test
data, the detector is found to perform well in most cases.
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II. FRONT-END FACTOR ANALYSIS (FA)

Gaussian Mixture Models (GMM) are typically used to
represent the acoustic feature space in speaker verification
systems. In most of the current systems, a universal back-
ground model (UBM) is first trained and then speaker-specific
models are obtained by adapting the UBM using a Maximum
A Posteriori adaptation (MAP) approach.

Typically, supervector of mean vectors in UBM is very
high dimensional which increases the number of parameters to
adapt. In the factor analysis (FA) approach [14], mean vectors
of speakers, mg, are represented in a lower dimensional total
variability space in which

ms = mg + Tws (1

where wy is called an identity vector (i-vector). 7' matrix is
trained using a database where multiple sessions are available
for each speaker.

In enrollment, an i-vector is extracted from each enrollment
speaker. In testing, the i-vector is extracted from the test
utterance and compared with the i-vector of the target speaker.
Probabilistic linear discriminant analysis (PLDA) [15] is used
for scoring here.

III. DETECTION OF SYNTHETIC SPEECH
Even though removing the session effects from the i-vectors
is important for successful verification, session differences
contain valuable information for detecting synthetic speech.
For session-i, channel vector can be defined as

Meyq = Mg 3 — Mg (2)

where my ; is the i-vector extracted in session-i and m, is the
mean i-vector for speaker s.

Channel vectors contain information about the distortions
that are session-specific. In the case of synthetic speech, there
is additional variability. For example, it is well-known that
synthetic features are smoother than natural features which
reduce the variance of all features [11]. Moreover, because
feature vectors in close proximity are similar to each other,
they are assigned to the same Gaussian. Therefore, as opposed
to the variety of Gaussians in natural speech, fewer Gaussians
are observed with higher frequency in synthetic speech.

We investigated the differences between i-vectors of syn-
thetic and natural speech through visualization. To that end,
Fisher linear discriminant analysis (LDA) is used to reduce
dimensionality of the channel vectors to 2. Channel vectors of
synthetic and natural speech is compared in Fig. 1. In the clean
case, there is a clear separation between synthetic and natural
vectors. In the noisy case, the two clusters are still clearly
separable. However, the margin is not as large as the clean
case. Thus, noise distorts the smooth structure of the synthetic
features and make clean and noisy channel less separable.

Even though the clusters are separable in noisy conditions,
an important question arises: what if the attacker and the
defender use different SSS technologies? In particular, we
are interested in the worst case where the attacker has more

Clean (Matched SSS)

5-
- Synthetic
Natural
ok
-10 -5 0 5 10
Noisy (Matched SSS)
50
Synthetic
e Natural
oL
-10 -5 0 5 10
Babble Noise 10db (Mismatched SSS)
50
Synthetic
Natural
oL
5 . . . )
-10 -5 0 5 10

Fig. 1. Illustration of channel vectors after they are mapped to 2 dimensions
using LDA. In the top figure, clean synthetic and natural data is used where
both test and train synthetic data are generated with STRAIGHT and GV.
In the middle figure, noisy natural and synthetic data are used where both
test and train synthetic data are generated with STRAIGHT and GV. Mixed
type of noises are used in training LDA and channel vectors of noisy natural
and synthetic speech (mixed noise) are shown. In the bottom figure, LDA is
trained on noisy synthetic speech without GV and STRAIGHT but the test
data are generated with STRAIGHT and GV. Effect of mismatch in synthesis
technologies are shown. Mixed type of noises are used in training LDA and
channel vectors of noisy natural and synthetic speech (babble noise) is shown.

advanced technology compared to the defender. To test that
condition, STRAIGHT vocoding and GV adjustment is used
at the attacker side but not at the defender side. Clusters for
synthetic and natural channel vectors at 10dB babble noise are
shown in Fig 1. Using different synthesis technologies by the
attacker and defender caused significant overlap between the
clusters which makes the detection problem harder.

Exploiting the structure in the distribution of channel vec-
tors, a detector is designed to detect synthetic speech. Dimen-
sionality of session vectors are first reduced using LDA. Then,
a support vector machine (SVM) with soft-decision output
is trained with the noisy synthetic and noisy natural session
vectors. Linear kernel is used with the SVM.

IV. EXPERIMENTS

A. Experimental Setup

WSJ1 database [16] is used for the verification experiments
similar to [2]. 69 male test speakers are enrolled into the
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system. Each enrollment utterance is around 4-6 seconds long.
For each enrolled speaker, 59 client tests and 340 impostor
tests are done. Impostor tests are created by using 5 utterances
from each of the 68 impostor speakers among the enrolled
speakers. Each test is done using one utterance. Verification
system uses 19 dimension MFCC plus 1 energy static features
and their delta and delta-delta features. However, static energy
is not used which makes the total dimension of features 59.
256 mixture UBM is trained using 84 male speakers, and 60
utterances from each speaker. T matrix is trained using those
same speakers and utterances. Rank of the T matrix is set to
400.

Experiments are done for clean training and test data as well
as noisy training and test data. Noise is added to clean speech
samples at 10, 15, and 20dB SNRs because when the SNR is
below 10 dB, performance of the verification system is found
to be unacceptably poor. The detector and the verification
systems are trained using a mixture of white, babble, car, and
station noisy samples under 10, 15, and 20dB SNRs in noisy
conditions. Bus, cafe, metro, and office noises are used only
during testing.

For each enrolled speaker, different statistical models are
created for attacks using adaptation with one, two, three,
and four utterances. Synthesis is done for all of the 69
speakers enrolled into the verification system. Enrollment
and test data are not used for adaptation. Experiments are
also done using speaker dependent (SD) models for compar-
ison purposes, where 150 utterances are used for adaptation.
Speaker-independent (SI) model is generated using four male
speakers and 1250 utterances from each speaker. Constrained
structural maximum a posteriori linear regression (CSMAPLR)
algorithm is used for adaptation [9].

SSS systems were trained with 198 dimensional vectors
consisting of 40 Mel-Generalized Cepstral (MGC), 1 Log-
Fundamental frequency (LF0), and 25 Band APeriodicity
(BAP) coefficients and their delta and delta-delta parameters.
25 msec analysis window with 5 msec frame rate is used for
feature extraction. Phonemes are modeled with 5 state hidden
semi-Markov models (HSMM) [17]. STRAIGHT vocoding
and global variance adjustments are done to improve the
synthesis quality.[13]

Training data for UBM and T are used for training the
detectors. The same features used in the verification system
are used for the detector. Similar to the attacker, a speaker-
independent (SI) model is needed for creating the synthetic
speech database for training the detector. Here, SI model
is trained using the training data of the verification system.
Synthesized versions of the test data used for testing the
verification system are used to assess the performance of
the detectors under different conditions. Detector performance
is reported in terms of equal-error-rate (EER) for each test
condition. Dimension of the channel vectors are reduced to 50
with LDA before using SVM for synthetic speech detection.

B. Results and discussion

Baseline performance of the voice verification system in
clean training and test conditions in terms of equal-error-rate
(EER) is 0.23%. Performance of the system for individual
noise types and SNRs are shown in Table I. EER calculated
under all SNRs and noise types combined is 1.81% which is
almost 8-folds increase compared to clean conditions. White
noise had particularly higher error rate compared to others
since it distorts all of the speech spectrum.

TABLE I
EER OF THE VOICE VERIFICATION SYSTEM FOR DIFFERENT NOISE TYPES
AND SNRS. VERIFICATION SYSTEM IS TRAINED WITH MIXED NOISE
CONDITIONS AND SNRS. WHITE, BABBLE, CAR, AND STATION NOISES
WERE USED IN TRAINING OF THE VERIFICATION SYSTEM.

Seen noises 10db | 15db | 20db
white 453 1198 | 1.16
babble 1.27 | 1.23 | 1.11
car 1.21 | 1.19 | 1.26
station 0.96 | 0.97 | 1.03
Unseen noises | 10db | 15db | 20db
bus 1.27 | 1.24 | 1.22
metro 1.26 | 1.10 | 1.13
office 125 1.28 | 1.25
cafe 1.13 | 1.13 | 1.15

For spoofing attacks, threshold of the voice verification
system is set to 1.81% average EER point. Results with
clean train/test and noisy train/test are shown in Fig. 2. Noise
substantially increases the effectiveness of the attacks. Effec-
tiveness of car and bus noises are below others since those
noise types have lower bandwidth. Interestingly, effectiveness
of the attacks are close to each other at different SNRs. This
is thought to be a result of the fact the system is trained with
a mix of all SNRs and all noises. Moreover, the calibration is
also done with a mix of all conditions. Thus, the system does
not seem to substantially favor any particular SNR.

Spoofing attacks become more effective when more adap-
tation data becomes available. However, performance seems
to saturate more rapidly in the clean conditions compared to
noisy conditions.

White noise has especially lower false alarm rates compared
to other noise types. The reason for that can be understood
from Fig. 3. In that figure, at 10db, white noise detection error
trade-off (DET) curve is significantly separated from the other
noise types which holds for other SNR types and adaptation
data sizes also. The 1.81 % EER, however, is computed by
using all noise conditions at all SNRs which causes an outlier
effect where the white noise has a big effect on the operating
point. Thus, at the 1.81 % operating point, all noises other
than white noise have significantly higher false alarm rates
compared to missed detection rates as shown in Fig. 3. White
noise, however, does not significantly deviate from the EER
point. As a result, its false alarm rate is lower than others in
spoofing attacks.

The proposed detector has 0% detection error for clean
case. For noisy case, EER is less than 0.5% for all noise and
SNR conditions as shown in Fig. 4. Thus, synthetic speech
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Fig. 2. Verification false alarm rates under attack with synthetic speech.
Results are reported for both clean and noisy conditions. In the “Clean”
case, both test and train samples are clean and it is shown in the figures
for comparison purposes. Babble, cafe, and station noise results have almost
overlapped here. Metro, bus, and office noise results have almost overlapped
here.
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Fig. 3. DET curves of the verification system under attack at different noise
conditions at 10dB. Natural speech is used for clients and synthetic speech
is used for impostors. Performance of the verification system for different
noise types are indicated with circles when the verification system is tuned
to 1.81% EER point with mixed noise conditions.

can be effectively detected in the i-vector space with very
high accuracy as observed visually in Section 3. To check
if these results still hold for mismatched SSS technologies
in attacker and defense sides, the detector is trained with
SSS without GV or STRAIGHT. The attacker, however,
used STRAIGHT and GV which are known to increase the
quality of speech. Effectiveness of the spoofing attacks in
such mismatch conditions are reported in Fig. 5. Under the
mismatched SSS synthesis conditions, detection performance
decreases substantially especially for babble and white noises.

. . . . . . . . . . . . .
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Fig. 4. Detector performance (EER) when detector is trained with STRAIGHT
vocoder and GV. And, the attacker uses STRAIGHT vocoder and GV as well
(Matched condition in SSS). Except for white noise at 10dB, EER of all cases
is under 0.1%
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Fig. 5. Detector performance when detector is trained without STRAIGHT
vocoder or GV but attacker uses those two techniques for generating more
natural speech. Metro, cafe, and station noise results have almost overlapped
here. Car, bus, and office noise results have almost overlapped here.

This result calls for training detectors with different synthesis
conditions and not fit the detector on one particular type of
SSS.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose to attack an i-vector based
voice verification system with SSS when limited amount of
adaptation data is available. We have shown that effective
attacks are possible in clean conditions. Moreover, substantial
performance gains are obtained when the verification system
is trained with mixed noise conditions at and above 10 dB
and noise is intentionally added to synthetic speech. We also
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proposed a synthetic speech detector that is found to have
excellent performance in noisy conditions.

The proposed detector did not perform as well when differ-
ent SSS vocoders are used for training and testing the detector.
In the future work, we will focus increasing the robustness of
the detector to mismatch in SSS techniques.
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