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Abstract—This paper proposes a novel method to estimate non-
integer shift of images based on least squares approximation in
the phase region. Conventional methods based on Phase Only
Correlation (POC) take correlation between a image and its
shifted image, and then estimate the non-integer shift by fitting
the model equation. The problem with using POC is that the true
peak of the POC function may not match the estimated peak
of the fitted model equation. This causes error in non-integer
shift estimation. By calculating directly in the phase region, the
proposed method allows the estimation of decimal shift through
least squares approximation. Also by utilizing the characteristics
of the natural image, the proposed method limits adoption range
for least squares approximation. By these improvements, the
proposed method improves the estimation and achieves high
accuracy.

I. INTRODUCTION

With the recent advancement of hardware technology, large
resolution sensors capable of taking images and videos with
huge data sizes have become more common. With these
huge data, the needs for technologies like video encoding,
signal processing, and pattern recognition have increased. For
example to handle these huge data sized videos, encoding
technologies like MPEG-2 and MPEG-4 have been introduced.
These technologies encode videos by finding the most similar
patch from the frames before. And to find the most similar
patch, shift estimation technologies are used. Since the shift
estimation is the basic part of many technologies, the improve-
ments will have a large impact.

Major methods of shift estimation uses Phase Only Correla-
tion (POC) of the two input images, which shows sharp peak
corresponding to the shift. By using POC, shift estimation on
integer accuracy can be done easily. So estimation with non-
integer accuracy has gathered attention recently. These include
methods which use calculation in frequency domain [1]-[4],
estimation of the true peak by using model equation fitting [5]-
[8], and DCT coefficients called DCT-SPC [9], [10]. Although
methods which use model equation to estimate the true peak
of the POC may have high accuracy, they have possibility that
the true peak and the estimated peak of the model equation
don’t match. As a result, it causes estimation error.

In this paper, we propose a new method to estimate image
shift on non-integer accuracy. The proposed method estimates
shift directly in the frequency domain by calculating the slope
of the phase response. However, the obtained phase component
includes many discontinuity, because of calculation of tan—1.
This discontinuity prevents us from estimating the slope which
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corresponds to the shift value. The proposed method unwraps
the phase component by subtracting the phase component of
the integer shift value. Then we obtain a smooth continu-
ous phase component, which allows estimation of the slope
corresponding to the decimal shift directly in phase region.
Consequently, we avoid the cause of error in the conventional
POC based method without using the model equation.

The rest of this paper is organized as follows. In section II,
we will explain the conventional POC. Then in section III, we
explain the details of the proposed method. Then in section
IV, we test the proposed method and compare it to other
conventional methods through simulation. Lastly in section V
we present conclusion.

II. CONVENTIONAL METHOD

In this section, we explain the POC based shift estimation.
The POC takes the correlation of two images in frequency
domain to obtain the peak which corresponds to the shift value
between the images.

A. Phase Only Correlation

First we consider an image f(z,y) sized M x N and an
image g(z,y) which is (d1,02) shifted image of f(z,y) in
parallel as they are defined below.

x€{0,1,2,...,M — 1}
ye{0,1,2,...,N -1}

(1)
2

Also Fourier transforms of the two images f(z,y) and g(z,y)
are given by

M—-1N-1

Flliha) = Y0 S flasy)es2eteh Akl
z=0 y=0

= A(ky, kg)e?fr (F1h2) 3)

M—1N-1
G(ky, k) = Z Z g(x7y)e—j%(xkl/Mﬂkz/N)
=0 y=0

= B(kl,k2)6j62(k1.,k2) (4)

where A(k1, ko) and B(k1, ko) represent the amplitude com-
ponents, €% (k1:%2) are the phase components of their images,
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Fig. 1. Flow chart of the proposed method
fitting to estimate the true peak. The model equation used in
the conventional methods is as follows.
" | (61,8)
o8 r(z,y) ~ MlN Sjmf(“? S.mff(w?). 8)
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Fig. 2. Example of POC function r with shift value (J1,d2)

and j denotes an imaginary unit. Now, a normalized cross

power spectrum R is given by

_ F(ky,ko)G* (K1, k2)
|F(k1, k2)G* (K1, k2)

R(ky,k2) &)
where G*(k1, ko) denotes a complex conjugate of G(kq, k2).
Therefore R can be represented as follows from equation (3)
and (4)

R(ky, ky) = e700k2) (6)

where 0(ky, k2) = 01(k1, k2) — 02(k1, ko), which is the phase
difference of the two input images. Then, the POC function
r(x,y) of the two images are given by 2-D inverse discrete
Fourier transform of R(k1, k2) by

M-1N-1

— 1 j2m(k1x/M+koy/N)
r(z,y) = UN kZO kZO R(ky, ko )e? "™ Y )
1= 2=

Fig. 2 shows the example of POC with peak indicating integer
shift value (91, d2).

B. Non-Integer Shift Estimation

The peak of the POC function 7(x, y) only shows the integer
shift (47, 65) of the images. To estimate the non-integer shift
of the images, estimating the true peak of the POC function
is necessary. Conventional methods use the model equation
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C. Problem with Conventional Method

The conventional methods need to fit the model equation
to the calculated POC function 7(z,y) to estimate the shift
at the non-integer accuracy. However, it is not certain that
the estimated peak of the model equation matches the true
peak of the POC function r(x,y). By avoiding the use of
the model equation fitting, the proposed method estimates the
shift directly from the phase components of the two images.

ITII. PROPOSED METHOD
A. Details of Proposed Method

In this section, we explain the proposed method. The
flowchart of the proposed method is as shown in Fig. 1.
The proposed method estimates the shift between the images,
without using the fitting of the model equation. The proposed
method uses the phase difference of the two images, 0(k1, k2)
from equation (6), then approximating it as a smooth surface
which corresponds to the shift of the images.

First, we look at phase difference 6(k, ko) as follows.

_1 Im(R(k1, k2))

O(ky, k2) = tan Re(R(k1,k2))

)
As the images are shifted in parallel, 6(kq, ko) can be
approximated as

9(]431, kg) ~ aky + bko (10)

where a and b denote coefficients for slope in each direction
of k1, ko axis. We can estimate the pair of coefficients by the
following least squares method.

{a,b} = argmin Z

{a,b} k1,ko

2
(9(1@1, ko) — (akl + bkz)) (1
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Fig. 3. Phase component before removal of integer shift

Fig. 4. Phase component with only decimal shift

As a result, we can obtain the estimated true shift ((51, (5}) as
M N

—a = —b.
2 27

Actually, the phase component § we obtained at equation (9)
has discontinuity shown in Fig. 3. This is due to the value
of the phase component over wrapping between range of —m
to m. To unwrap this, we split the phase component to two

separate components, integer and decimal components.

g(lfl, kg) ~ ak1 + bk‘g
=(a' +ad" ki + (b +b")ks

o = da 12)

)

13)

here, a’, a’ denote integer and decimal shifts to the &
direction. And ¥, b” denote integer and decimal shifts to the
ko direction. By subtracting integer shift from equation (13),
we can obtain phase components with only the decimal shift.
We use the conventional POC to get the slopes (a’,d’) of the
integer shift. Then we obtain the phase component 6 with
only the decimal shift as follows

0”(]{}1, kg) = Q(kl, kg) — (a'k1 + b/k2)

~ a”kl + b”kg. (14)

Equation (14) means the removal of the integer shift esti-
mated from the conventional POC from the original phase
components of two images. We can solve the discontinuity
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Fig. 5. Slice of phase component

and obtain phase component §” with only the decimal shift.
Consequently, we apply the next process to obtain the decimal
phase component #” from R in equation (6), and then apply
the least squares approximation as follows.

30" (kuk2) _ o3 (0(k,k2)—(a’k1+b'k2))

= 6j0(k1,kz)/ej(a'kﬁb’kz)' (15)

2
{a", 1"} = argmin Z (9”(1@1, ko) — (a"k1 + b”kg))
{a,b} kex ko

(16)

The phase component from this process does not cause
discontinuity as shown in Fig. 4. As a result, it allows the
approximation of the coefficients (a”,b”) to the direction
(K1, k), respectively. The proposed method focuses on the
axis component of the phase component to reduce the com-
putational cost. Then, the proposed method uses the least
squares approximation (16) to estimate the coefficients. Fig.
5 shows the slice of phase component at ko = 0 of the phase
component. By applying the estimated coeffients (a”,b”) to
the equation (12), we can obtain the actual decimal shift
(87, 6Y). We obtain the estimated true shift (8, d2) as follows,
by adding the integer shift from the conventional POC.

A M N
51 =—a"’ + 5/1

o (17)
~ N ~
by= '+, (18)

B. Natural Image in Frequency Domain

Natural images tend to have most of its energy in the
low frequency area and not so much on the high frequency
area. In addition, high frequency area gets highly influenced
by noise. Therefore, we limit the range for the least squares
approximation to low frequency range to achieve better result.
So in the proposed method, we limit the range /C by parameter
K, we use in least squares approximation by 0.1N/2 from the
center of normalized frequency area.

K={k|-Kp<k<Kp} (19)
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(a) Original Image (b) Shifted Image

Fig. 6. Original image (Left) and non-integer shifted image (Right)
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Fig. 7. Relation between estimation error e and shift value|d|

Finally, we can solve the following two equations to obtain the
coeflients which represent the non-integer shifts of the images.

2
a’ = argmin Z (0;’2_0 (k1) — ak1> (20)
¢ ke
2
b = argmin Y (9;;1_0(1@2) . b@) (21)
b ko€

where 0/ _, denotes the slice of the phase component at k; =

/!
0, also same for ) _.

IV. EXPERIMENTS
A. Simulation

First we explain how to create the non-integer shifted images
we use for the simulation. For simplicity we explain in 1-D.
We consider 1-D signal f(z) and its non-integer shifted signal
g(x) and the non-integer shift |§|. The shifted signal can be
obtained by multiplying the non-integer shift T'(K’) as shown
in equation (22) in frequency domain. Therefore, DFT of the
non-integer shifted signal G(k) and the non-integer shift 7'(k)
are represented as follows.

T(k) = 2rké /N (22)
G(k) = F(k)e’T® (23)
where F'(k) denotes the DFT of original signal f(z). By IDFT
of G(k), we can obtain the non-integer shifted signal g(z). Fig.

6 shows an example of the original image and image shifted
by (25.5 30.5) pixels.
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Also, we applied the Hanning window in order to solve
the discontinuity on the ends of the images when we perform
DFTs. We use the 2-D Hanning window defined as follows.

w(x—M/2) w(y—N/2)
1+ cos T557= 1 4 cos B

2 2

w(z,y) = (24)

B. Experimental Results

To test our methods, we used the 512 x 512 sized image
named Lena and shifted to x axis direction from 0 to 10 pixels
every 0.01 pixel. Then taken an average of the error e and
evaluated the results. The error e is the absolute difference of
the true shift 6 = (d1,02) and the estimated shift 5= (31, 52)
as follows

e= 1619 (25)

Also to test the proposed methods resistance to noise, we
added noise intensity o = 0, 5, 10, 15, 20.

The results are shown in Table I — III. As Table I shows,
when the noise intensity o is 0, the proposed methods esti-
mates at very high accuracy. The proposed method has high
accuracy even with noise on the image by limiting the adoption
range on Fig. 5 to 0.4 — 0.5. Also, we show the estimation error
e on noise 0 = 0, K, = 256 by shift size on Fig. 7. On Table
IV, we summarized average errors of the proposed method on
other test images by changing the adoption range K.

Next we evaluated the proposed method to the conventional
POC with fitting the model equation, and DCT-SPC [9], [10].
We summarized the average error on 0-2 and 2-10, every
0.02 pixels and 0.1 pixels respectively. Also to achieve better
results for conventional POC, we applied a window function
and weighting in frequency domain. As Table II and III show,
the proposed method performs with higher accuracy than other
conventional methods while shift value is small.

V. CONCLUSION

In this paper, we proposed a new method to estimate the
non-integer shift between two images directly in phase domain
without using model equation fitting on the POC function. By
using the estimated integer shift from the conventional POC
to solve the discontinuity of the original phase component, we
obtained the non-integer shift only phase information. Then
we estimated the non-integer shift of the two images. In order
to achieve better result, we limited the range for least squares
approximation to utilize the characteristic of the natural image.
Then we achieved high result even with noise on the image.
Consequently, our method can perform shift estimation at
higher accuracy than conventional methods.
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