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Abstract— Self-occlusion is a challenging problem existing in 
human pose estimation. In this paper we exploit a new cue to 
solve this problem: the torso orientation. We describe a 
technique to automatically detect self-occlusion in training set 
without visibility label. Given this prior information, we are able 
to jointly learn an occlusion-aware model to capture the pattern 
of self-occluded body parts. We evaluate our model on two major 
datasets, which are both publicly available. The experiment 
result shows that our model is quite competitive in both of the 
datasets with the state-of-the-arts. By this way, we illustrate our 
model’s robustness to the self-occlusion problem in human pose 
estimation. 

Keywords—computer vision; pose estimation; articulated 
model; self-occlusion 

I. INTRODUCTION 

The target of 2D human pose estimation is to generate a 
configuration of human body parts from a still image. It plays a 
vital role to many other high-level computer vision topics, e.g. 
3D human pose reconstruction, activity recognition and 
human-computer interaction. Most of the state-of-the-art 
methods adopt the pictorial structure (PS) [1] to describe 
human body, which is made of two components: the local 
appearance templates of each part and the geometric 
constraints between pairs of parts. Although a great amount of 
pose estimation algorithms has been proposed in recent years, 
this problem still remains challenging due to the occlusion, 
appearance diversity, complex background, camera viewpoint 
and the large variation of body part configuration.  

In this paper, an occlusion-aware model is developed to 
deal with the problem of self-occlusion, using the torso 
orientation as prior information. In the existing methods of 
human pose estimation, detection failures often occur while a 
body part is occluded by the others. To address this problem, 
we exploit the observation that the self-occlusion pattern is 
highly related to where the person is facing with respect to the 
camera viewpoint. With the information of torso orientation, 
we can infer the position of self-occluded part, since they tend 
to share similar appearance and deformation pattern under the 
same condition. For example, if a still image contains a person 
with his torso heading the right and the two wrists are 
determined to be overlapped, then it is highly possible that the 
right wrists is occluding the left one. We develop our model 
based on the famous flexible mixtures-of-parts (MoP) model 
[17], which models each body part with a collection of ‘types’. 

We use an extra body part to represent the torso and one more 
type is assigned to each part to model self-occlusion 
relationship. Notably, we do not require a visibility label in the 
training data, but learn it automatically. By experiment we 
show that our methods not only out-performed the original but 
also better than other recent methods. 

This paper is organized as follows: In Sec.II we introduce 
the related works to deal with the occlusion problem in pose 
estimation. In Sec.III we firstly review the structure of the 
Mixture of Parts model. Then we introduce our idea, namely a 
self-occlusion handling process using the torso direction as a 
cue. At last we will illustrate the inference and learning 
procedure in detail. In Sec.IV we show and analyze the 
experiment result to support our idea. The key contributions of 
this paper are: 

 A new kind of prior information is introduced to 
address the self-occlusion problem in human pose 
estimation. 

 A method to generate the occlusion relationship 
without requiring the visibility ground truth annotation. 

II. RELATED WORK 

The most popular model in human pose estimation in 
recent year is the part-based model, which considers both of 
the local appearance of each part and the pairwise spatial 
constraints on adjacent. However, the input information is 
somewhat insufficient to determine the global configuration of 
human body, since the local appearance is often confused by 
the background or similar parts e.g. the limbs look similar to 
their symmetrical correspondents. Moreover, the large degree 
of freedom of the human pose often leads to ambiguity of the 
spatial constraints. Yang and Ramanan proposed the MoP 
model [17] that considers a collection of the appearance under 
different conditions, which is one of the most successful 
models in performance. Observing that the MoP model usually 
fails when there is occlusion in test images due to the 
misdetection of appearance of certain parts, we proposed a 
method to improve it by introducing an occlusion prior. Unlike 
some other methods, we don’t require visibility ground truth 
labels at training stage. 

 The existing methods aiming to handle the occlusion 
problem in pose estimation can be categorized into two groups: 
(1) miscellaneous spatial models and (2) occlusion pattern 
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modeling. For the first group, Sigal and Black [3] extended the 
tree model with additional occlusion constraints to encode the 
occlusion relationship between parts. Moreover, Tran and 
Forsyth [4] connected all parts from upper body together to 
generate the “full relational model” of human body. Since the 
extra loops are introduced to the original tree structure, it will 
not be able to implement dynamic programming in inference 
stage, which makes it a NP-hard problem. Apart from the 
loopy models, Wang and Mori [6] combined multiple tree 
models together to reason the occlusion in pose estimation. 
Based on this idea, Johnson et al. [7] partitioned the space of 
human pose by clustering the relative positions between each 
joint and neck joint. In a recent paper, Chen [8] exploited the 
idea that the visible nodes form a subtree under occlusion, 
which generates a more reasonable solution space. Also, a very 
recent work uses an “unrolling” technique to accelerate the 
inference on non-tree structure [5]. 

 Although a lot of work has been done on the spatial 
relationship, there is an inherent dilemma in this family of 
method: The traditional tree structure is simple and 
straightforward, but usually fails to capture the high level 
interaction between body parts; the graphical models with 
loops allow for complicated part relationship, but they are not 
eligible for efficient and exact inference process [2]. 
Meanwhile some works aim to utilize the occlusion patterns. 
There are proposed approaches aiming to model occlusion by 
segmenting the feature map [9, 10]. While the “poselet” was 
introduced to directly capture the pattern of body parts 
interaction [11], Desai and Ramanan extend it to model the 
human body and occluding objects altogether [12]. Also, the 
grammar-based models [13] and the strongly supervised 
deformable part models [14] contain explicit occlusion part 
templates. Ghiasi et al improved this idea by using a mixture of 
templates to model the occlusion pattern through a non-
parametric way [15]. Additionally, Radwan et al. [16] adopted 
Twin-GP regression as a post process to rectify the 2D pose 
estimation. 

III. THE MODEL 

A. Mixture of Parts(MoP) Model 

 Given an image I, we can define a graph G = (V, E) as a PS 
model. The nodes in V represents the parts, while the edges in 
E stand for the pairwise spatial constraints between the 
neighboring parts. Each part i is presented by two parameters 
combined: (i) the pixel location p and (ii) the mixture type t. 

Therefore, the whole collection of ( , )i i ip x y  and it can 

sufficiently describe a global human pose configuration, which 

is denoted as (p, t), where p = 1[ ... ]T

np p and t = 1[ ... ]T

nt t , n = 

|V|. The types can be defined by the relative position or 
semantic classes of parts, e.g. the vertical versus horizontal 
arms and the open versus close hands. Now the score of a 
configuration can be defined as following equations: 

 .
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Where the former unary term ( , )iI p is the feature vector and 

the later binary term 2 2( ) [ , , , ]T
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parameter it

i is the appearance template to be learnt. And the 
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,i jt t

ij is the deformation model, which can be 

interpreted as a “spring” that connects a particular pair of parts 

i, j with respect to their types ( , )i jt t . 

   The first term ( )S t is the compatibility function for part 

types, which can be divided into two terms as well: 
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The parameter it

ib prefers particular type assignment of part 

i, and the parameter
,i jt t

ijb is biased on certain co-occurrences of 

connected parts’ types. An example is that if two parts are form 

the same rigid limb, then 
,i jt t

ijb would be bias to that they have 

the same orientation. 

Notably, the original model uses the tree structure to 
represent human body parts. Alternatively, we adopted a star-
structure with an extra parts correspondent to the torso type to 
better capture the kinematic constraints, as shown in Figure.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. This figure shows the difference of graphical model between (a) 
the original base method and (b) our modified model. Note that the 
original model has 26 parts and or model has an extra torso part. 

B. Our Model 

It is intuitive that the pattern of self-occlusion is highly 
related to the torso orientation: Due to some kinematic 
constraints of human body, the diversity of limbs is limited 
given a specific direction of torso. Therefore, the status of 
torso can imply the limbs’ location to some extend. In order to 
model the body part under the presence of self-occlusion, we 
assigned an extra type to each part, the “occluded” type. We 
expect that this extra type can be used to pick out the occluded 
part. By this mean, we can model particular patterns of them 
respectively. 

        

(a)      (b) 
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To acquire the occlusion relationship, we use the 
information of torso orientation instead of the ground truth 
visibility labels. Our basic idea is that the torso, as the most 
inflexible part of human body, can imply the layer of other 
human parts regarding to the camera viewpoint. Thus, it will 
be reasonable to speculate the occlusion between two parts 
that have close ground truth locations.  

Inspired by this idea, we add an extra torso part to the 

original model, denoted by
0 0( , )p t . The position 

0p can be 

defined by the barycenter of its children or it can be defined 

by a weighted average of certain combination of parts, while 

the parameter 
0t belongs to a set 

0T of torso direction. 

Although we uses four directions in our experiment, namely 

facing left, right, to the camera and away from camera, the set 

of
0T can be amplified by finer classification of torso direction, 

e.g. facing up versus facing down. 

In practice, we classify the torso types by the physiological 
constraints of human body, including the ratio of torso length 
and shoulder width, the direction of knees and elbows and the 
relative position of head and neck, etc. 

With the new clue give above, we follow the inference and 
learning paradigm used in the base model [17]. 

C. Model Inference 

The inference process corresponds to the maximization of 
the model score defined by equation (1) in terms of p and t. 
Given that our graphical model is tree-structured, we can 
implement the inference algorithm efficiently by using the 
dynamical programming. The score of leaves can be computed 
in a sliding-window fashion exhaustively, and then be passed 
to their parents. Thus the score of a configuration can be 
obtained accordingly. The message passing process can be 
described by following: 
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 Where the kids(i) means the children set of part i, and the 

part j is the parent node of part i. While the equation (6) 

computes the local score for all pixel locations of ip  and for 

all possible mixture types it , the equation (7) derives the 

location with the highest score over all location jp and all 

possible type jt . Thus the score of the leaf nodes can be passed 

along the tree and eventually reached the root part. Instead of 

simply picking up the best root score, non-maximum 

suppression is adopted, that is, for each spatial neighborhood, a 

local maximum is picked. By this way, multiple detections can 

be spread out through the image to increase the chance of true 

detection. Given the previous outcome of argmax , it will be 

efficient to obtain the location and type of each part in each 

maximal configuration by back tracking. 

In terms of computation, for each part one has to loop over 

L T possible parent locations and types, and compute the 

maximum over L T , meaning the computation 2 2( )O L T for 

each part, where the L denotes all possible locations and the T 

denotes all mixture types. In this case, ( , )i jp p is a quadratic 

function, thus the inner maximization (4) can be efficiently 

computed for each type combination in ( )O L with a max-

convolution or distance transform. Since 2T distance transforms 

must be done, the message passing cost is 2( )O LT for each 

part.  

D. Model Learning 

   The model learning process follows the supervised learning 

paradigm. The input data contains the positive examples 

{ , , }n n nI p t and negative examples{ }nI . To define a structured 

prediction objective function like in [26], we 

denote ( , )n n nz p t . Since the parameters ( , )b   in (1) are 

linear, the equation (1) can be rewritten as ( , ) ( , )S I z I z  . 

The learning form is as following: 
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
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 (5) 

As illustrated in above, the positive examples should score 
better than1, while the negative ones ought to score be less 
than -1 for all configurations of parts and types. The slack 

variables
n are designed to punish the violations of these 

constraints in the objective function. 

While implementing the learning process in practice, the 
ground truth label of visibility is unnecessary. To acquire the 
type of torso, we use some inherent physiological constraints in 
human body to obtain the torso types. Given the type of torso, 
we can speculate the layer of human body with respect to the 
camera viewpoint. Afterwards, we use the ground truth box of 
each part to determine if it’s overlapped. If so, the parts on the 
top layer of human body are very likely to occlude the parts 
behind it.  

For those which are not occluded, the K-means technique is 
used to generate part type from relative position. In our 
experiment, the relative position of each part and its parent is 
clustered, and types for all part I can be defined as 
demonstrated above.  

IV. EXPERIMENT 

In this section, we evaluate the proposed torso-direction 
model on two popular pose estimation benchmarks. The results 
on the some benchmarks of other state-of–the-art approaches 
are compared to show difference. In terms of performance 
measure, we use the popular PCP metric [24], which stands for 
“Percentage of Correct Pose”. It measures the accuracy by 
matching the connection between joints with the ground truth. 

Datasets: To evaluate our model, we used two publicly 
available pose estimation dataset containing miscellaneous 
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human body configuration and camera viewpoint: (1) The 
“Leeds Sports Poses” (LSP) dataset [7], containing 2000 
images show people involved in various sports, where we use 
former1000 images for training and later 1000 images for 
testing. (2) The “Image Parsing” (IP) dataset [25] containing 
305 images of fully visible people performing a diversity of 
activities, where we use first 100 images for training and the 
rest 205 for testing. 

Implement details: We extended the base model with our self-
occlusion handling strategy. Firstly, as shown in Figure 1(b), 
27 body parts are derived from the annotation. For each body 
part, except for the torso part, we define 7 mixture types i.e. 
one more extra type than the original model. For the torso part, 
we define 4 mixture types, corresponding to the body facing 
left/right and to/away the camera. The non-person images from 
INRIA dataset are used as the negative examples. The part 
filter of our model is based on the rigid HOG templates [23].  

A. Results on LSP 

Table I shows the results of our model and other state-of-
the-art models in term of PCP metric on LSP dataset. To 
illustrate the ability to deal with the highly flexible parts, we 
pick out the average PCP score of limbs of each model. As we 
can see, our method outperforms all other methods under a 
standard PCP metric using PC annotation, especially in the 
detection of limbs. Please note that we do not use the 
Observer-Centric (OC) annotation, i.e. left/right body parts are 
marked according to the camera viewpoint. The OC 
annotation is not able to tell if the person is facing the camera 
or turn his back around. Although the OC annotation reduces 
complexity in training stage, it does not provide enough 
information to deal with the self-occlusion. Therefore, in our 
torso type definition these two situations are separated, as we 
use the Person-Centric annotation to training a discriminative 
model to address the self-occlusion problem. 

TABLE I. PCPa VALUES ON LSP DATASET 

a. The threshold of PCP metric is 0.5 

B. Results on Image Parse 

 Table II shows the PCP score of our model and other four 
techniques, including our base model. As we can see, given 
the threshold of 0.5, the base model performs better than ours. 
However, if we restrict the PCP threshold to a more strict 
level, we can show that our model outperforms the original 
model in the average PCP score. This means that our model 
has a better performance when we have a higher requirement 

of the detection accuracy. The comparison between these two 
methods under different PCP threshold is illustrated in 
Figure.2. If we consider another frequently used criterion, 
Percentage of Correct Keypoints (PCK) [27], our model is 
also better than the base model on the whole dataset. 
Moreover, our model excels more significantly while we only 
consider the self-occluded images, as shown in table III. 

Additionally, in term of qualitative results, Figure.3 shows 
the qualitative comparison between our model and the base 
model. In the first row, because the baseball player is side 
viewed, while the base model failed to find his left arm, it will 
take a speculation according to the global configuration. But 
in our model, the pattern of torso direction can be detected and 
used to infer the occlusion between his left arm and his body. 
Similarly, in the second row, the left arm is occluded by the 
person’s left shoulder. In our model, we can reason its location 
out of this occlusion pattern. 

TABLE II. PCP VALUES ON IP DATASET 

 

TABLE III. PCKa VALUES ON IP DATASET 

a. The threshold of PCK is 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Upper 
Leg 

Lower 
leg 

Upper 
Arm 

Lower 
Arm 

Avg 
Limbs 

Avg 
All 

Our Approach 78.1 66.1 61.2 42.7 62.0 69.1 

Base-Model [17] 74.9 63.3 61.3 41.6 60.3 67.8 

Fu et al.[5] 74.2 66.8 62.5 41.3 61.2 66.9 

Wang et al.[6] 74.0 69.8 48.9 32.2 56.2 62.8 

Johnson et al.[20] 74.5 66.5 53.7 37.5 58.0 62.7 

Tian et al.[18] 69.9 60.0 51.9 32.9 53.7 61.3 

Dantone et al.[19] 66.5 61.0 45.1 24.7 49.3 55.5 

Method Upper 
Leg 

Lower 
Leg 

Upper 
Arm 

Lower 
Arm 

Avg 
Limbs 

Avg 
All 

Our Approach 89.9 82.8 74.4 50.9 74.5 79.3 

Base-Model[17] 88.4 80.8 81.3 53.4 76.0 80.6 

Tian et al.3 Layers[21] 85.1 76.1 71.0 45.1 69.3 74.4 

Tian et al. 4 Layers 81.2 71.0 69.5 39.0 65.1 71.0 

Johnson et al.[20] 73.4 65.4 64.7 46.9 62.6 66.2 

Andriluka et al.[22] 63.2 55.1 47.6 31.7 49.4 55.2 

PCK Avg All Limbs Avg All Avg SO Limbs Avg SO 

OUR 65.5 73.3 54.8 62.9 

BASE 64.6 73.1 52.2 60.7 
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Figure 2. The average PCP score of our model and the original model under 
the threshold of 0.35. 

V. CONCLUSION AND FUTURE WORK 

In this paper we introduce a new prior into human pose 
estimation, which is the torso orientation. Given the torso 
orientation, we have a new cue to learn an occlusion-aware 
model. By this way, we address the self-occlusion problem at 
the testing stage. We demonstrate that our extended model is 
competitive compared to other cutting edge techniques by 
experiment. In the later future, we will try to exploit a 
hierarchy of overlapping body parts. And use the layer 
information to eliminate the ambiguity caused by self-
occlusion.  
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Figure 3.  The qualitative results of our model and the based model. 
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