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Abstract—In recent years, voice conversion (VC) becomes a
popular technique since it can be applied to various speech tasks.
Most existing approaches on VC must use aligned speech pairs
(parallel data) of the source speaker and the target speaker
in training, which makes hard to handle it. Furthermore, VC
methods proposed so far require to specify the source speaker in
conversion stage, even though we just want to obtain the speech
of the target speaker from the other speakers in many cases of
VC. In this paper, we propose a VC method where it is not
necessary to use any parallel data in the training, nor to specify
the source speaker in the conversion. Our approach models a
joint probability of acoustic, phonetic, and speaker features using
a three-way restricted Boltzmann machine (3WRBM). Speaker-
independent (SI) and speaker-dependent (SD) parameters in
our model are simultaneously estimated under the maximum
likelihood (ML) criteria using a speech set of multiple speakers.
In conversion stage, phonetic features are at first estimated in a
probabilistic manner given a speech of an arbitrary speaker, then
a voice-converted speech is produced using the SD parameters
of the target speaker. Our experimental results showed not only
that our approach outperformed other non-parallel VC methods,
but that the performance of the arbitrary-source VC was close
to those of the traditional source-specified VC in our approach.

Index Terms—Voice conversion, three-way restricted Boltz-
mann machine, unsupervised learning, speaker adaptation, non-
parallel training.

I. INTRODUCTION

Voice conversion (VC), where speaker-specific information
in the speech of a source speaker is changed into that of a
target speaker while retaining linguistic information, garners
much attention nowadays because the VC techniques can be
applied to various tasks such as speech synthesis, aid for peo-
ple with articulation disorders, entertainment as voice changer,
etc [1], [2], [3], [4], [5]. Most of the existing approaches rely
on statistical models such as Gaussian mixture model (GMM)
[6], [7], [8], [9], which is one of the mainstream, non-negative
matrix factorization (NMF) [10], [11], neural networks (NNs)
[12], restricted Boltzmann machines (RBMs) [13], [14], and
deep learning [15], [16], etc.

However, these methods require parallel data (speech data
of the source and the target speakers aligned so that each frame
of the source speaker’s data corresponds to that of the target
speaker) for training the models, which hinders ease of use; 1)
the data is limited to pre-defined articles (both speakers must
utter the same articles), 2) the trained model is only applied
to the speaker pair used in the training, and it is difficult to

reuse the model on the conversion of another speaker pair. Fur-
thermore, the aligned data is not the original speech anymore
because the speech data is stretched and modified in the time
axis when aligned, and it is not guaranteed that each frame
is aligned perfectly, and such mismatching may cause some
errors in training. Several approaches, such as eigenvoice and
MAP [17], [18], [19], that do not use parallel data between the
source and the target speakers have been proposed, although
such methods still require parallel data between reference
speakers to obtain the speaker-independent space. Erro et al
proposed a non-parallel training method even on reference
speakers based on an iterative approach called an INCA
(iterative combination of a nearest neighbor search step and a
conversion step alignment) algorithm [20]. Our earlier works
also tackled with the non-parallel training using probabilistic
models named adaptive Boltzmann machine (ARBM) [21],
and speaker-adaptive-trainable Boltzmann machine (SATBM)
[22]. Although the speech quality produced by the non-parallel
approaches may fall short of that of the parallel approaches, the
non-parallel approaches improve convenience and practicality
since the models can be trained using existing speech data as
it is.

In this paper, we propose a VC method that enhances
convenience (easy-to-handle) in VC. Our approach requires
neither parallel data in the training, nor specification of the
source speaker in the conversion. As far as we know, one must
specify the source speaker on the conversion stage in all of the
conventional VC approaches. However, in many cases when
using VC, we only have to convert given speech into that of
the desired speaker; therefore, the VC that does not require the
specification of the source speaker will be more convenient
than the VC that does1. The former VC can be achieved
by combining the existing VC and speaker recognition tech-
niques; meanwhile our approach tries to achieve this in a prob-
abilistic manner using a single model. In our approach, a three-
way restricted Boltzmann machine (3WRBM) [23] is used to
model the relationships between fundamental speech factors
of acoustic, phonetic, and speaker features. The 3WRBM is a
energy-based probabilistic model that extends the well-known
two-layer RBM [24], [25] so that it represents up to three-order

1We refer to the former and the latter types as arbitrary-source VC and
source-specified VC, respectively.
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potentials among three different factors. It is assumed that
there are undirected connection weights between the different
factors, but no connections between the same factors like an
RBM. The connection weights may represent the strength of
the relationships between the factors. We further add several
constraints on the connection weights under the assumption
that an observed acoustic features are from the neutral acoustic
features that are not dependent on any speakers but on the
latent, phonetic features, multiplied with the speaker-specific
adaptation matrix. In other words, a speech signal of an
arbitrary speaker is considered to be composed of neutral
speech that only includes phonetic information, accompanied
with the speaker specific information. Our VC scheme can be
formulated as MAP estimation, which results in two steps:
1) to estimate phonetic features given acoustic features by
marginalizing over speakers, and 2) to estimate the desired
acoustic features from the phonetic features and the SD
parameters of the target speaker.

The proposed approach may resemble our previous works
[21], [22] in terms of unsupervised learning to decompose a
speech signal into phonetic- and speaker-related information.
The most significant difference is that our approach regards
speaker-identity features as variables that can be sampled, and
hence makes it possible to convert the voice from arbitrary
speakers, while the previous approaches do not.

II. MODELLING SPEECH USING 3WRBM

A well-known energy-based probabilistic model of visible
and hidden variables, restricted Boltzmann machine (RBM),
can be generally extended so as to represent more than two
variables [26]. Especially we call the model of three variables
three-way RBM. In this paper, we define the relationships
among three types of variables (descriptors) of acoustic fea-
tures (mainly cepstrum-based features) v = [v1, · · · , vD] ∈
RD, latent features h = [h1, · · · , hH ] ∈ {0, 1}H ,∑j hj = 1,
and speaker features s = [s1, · · · , sR] ∈ {0, 1}R,∑k sk = 1
using a 3WRBM, where D, H , and R indicate the numbers
of the acoustic features, the latent features, and the speakers.
In our approach, we only target on modelling clean speech
by various speakers; therefore, the latent features h may
represent phonetic-related information2 that are not observable
but exist behind the speech, since the variation caused by
speakers is captured by the speaker features s. h and s are
defined as one-hot vectors, and have values of 1 if only the
element of interest is activated. For example, the statements
hj = 1,∀hj′ = 0 (j′ 6= j) and sk = 1,∀sk′ = 0 (k′ 6= k)
indicate that the jth phonetic feature acts on the speech at that
time, and that the kth speaker uttered, respectively. The joint
probability of the three descriptors is defined as follows:

p(v,h, s) =
1

N
e−E(v,h,s), (1)

2So, we may call h as phonetic features.

where N denotes the normalization term. The energy function
E(v,h, s) is defined as:

E(v,h, s) = U(v,h, s) + P (v,h, s) + T (v,h, s) (2)

U(v,h, s) =
1

2
v>v̄ − b>v̄ − c>h− d>s (3)

P (v,h, s) = −v̄>Wh− h>Vs− s>Uv̄ (4)

T (v,h, s) = −
∑
i,j,k

v̄ihjskZijk, (5)

where we denote v̄ as the normalized acoustic features (v̄ =
[v̄i] = [ vi

σ2
i
]). U(v,h, s), P (v,h, s), and T (v,h, s) describe

the unary potentials, the pairwise potentials, and the three-way
potentials of the three descriptors, respectively, where b ∈ RD,
c ∈ RH , d ∈ RR, and σ = [σi] ∈ RD are bias terms of
the acoustic features, of the phonetic features, of the speaker
features, and variance terms of the acoustic features, W ∈
RD×H , V ∈ RH×R, and U ∈ RR×D are pairwise weights
of v and h, h and s, and s and v, and Z ∈ RD×H×K is
the three-way weights, whose element Zijk is of vi, hj , and
sk. Like an RBM, because there are no connections between
visible features, between phonetic features, or between speaker
features, the conditional probabilities p(v|h, s), p(h|s,v), and
p(s|v,h) form simple equations as follows:

p(v|h, s) = N (v | b+ Wh+ U>s+
∑
j,k

hjskZ:jk,σ
2)

p(h|s,v) = B(h | f(c+ Vs+ W>v̄ +
∑
i,k

v̄iskZi:k))

p(s|v,h) = B(s | f(d+ Uv̄ + V>h+
∑
i,j

v̄ihjZij:))

where N (·|µ,σ2), B(·|π), and f(·) indicate an element-wise
Gaussian probability density function with the means µ and
variances σ2 = [σ2

i ], a multivariate Bernoulli distribution
with the probabilities π of each taking the value of 1, and
an element-wise softmax function, respectively. Z:jk, Zi:k,
and Zij: denote the partial vectors of Z along the first, the
second, and the third modes, respectively. The model defined
in Eq. (1) closely resembles a factored 3WRBM found in
[23]. The significant difference is that a factored 3WRBM
deals with one visible descriptor with a hidden descriptor and
models the third-order relationships among two visible units
and a hidden unit, while our model deals with two visible
descriptors and a hidden descriptor to capture the relationships
among three units of the first visible, the second visible and the
hidden descriptors. Note that there are no connections between
units belonging to the same descriptors in our model unlike a
factored 3WRBM.

A. Constraints on phonetic- and speaker-related factors

The model defined in the previous section has a large
number of parameters and no constraints no parameters, which
causes overfitting and difficulties in training. Therefore, it
would be better to add some constraints to the model. In this
paper, we redefine the 3WRBM with structured parameters,
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motivated by the well-known speech modeling with affine-
transformation.

When we look at the parameters of three-way potentials
Z:jk, we may notice that the energy related to these parameters
when a phoneme j and a speaker k are activated is calculated
as negative inner product of v′ and Z:jk, which is T (v, hj =
1, sk = 1) = −v̄>Z:jk. The negative inner product takes a
small value when the normalized acoustic features are close
to the parameter vector Z:jk. In other words, under the stable
(low-energy) condition, Z:jk represents the acoustic pattern
that often appears in the training data and that depends on the
jth phoneme and the kth speaker. Considering decomposing
the pattern Z:jk into phoneme-related and speaker-related
factors, we define

Z:jk = Akmj , (6)

where mj ∈ RD and Ak ∈ RD×D denote the factors related
to the phoneme j and to the speaker k, respectively. Eq. (6)
indicates that Z:jk is obtained by projecting the feature vector
mj of the phoneme j into the speaker k’s space with his/her
own matrix Ak. Since it is generally known that the speaker-
induced modification is formulated as affine-transformation
in the cepstrum-based domain [27], [28], the formulation in
Eq. (6) is considered to be reasonable. Therefore, mj and
Ak indicate the acoustic pattern of the phoneme j that does
not depend on any speakers (neutral acoustic pattern) and
the adaptation matrix of the speaker k that projects neutral
acoustic patterns into the speaker-specific space, respectively.
The mj can represent the relationships between the phoneme
j and the acoustic features; hence, we set W:j = 0.

In addition, the bias dk of the speaker k may represent
something such as frequency of the speaker k in the training
data. In this study, we do not use such biases on speakers, i.e.,
d = 0, in order to treat speakers impartially.

Summarizing the above discussion, we redefine the energy
function for modeling speech as follows:

E(v,h, s)

=
1

2
v>v̄ − b>v̄ − c>h− h>Vs− s>Uv̄ − v̄>AsMh,

(7)

where we use As =
∑
kAksk and M = [m1 · · · mH ]. With

this reformulation, we obtain

p(v|h, s) = N (v | b+ U>s+ AsMh,σ2) (8)

p(h|s,v) = B(h | f(c+ Vs+ M>A>s v̄)) (9)

p(s|v,h) = B(s | f(Uv̄ + V>h+ [v̄>Ak]Mh)). (10)

Letting A ∈ RD×D×R be a third order tensor whose elements
are Ak in the third mode, the proposed model defined in
Eq. (7) is graphically represented as shown in Fig. 1.

B. Parameter estimation

Given a collection of training speech data X = {vt, st}Tt=1

that has T frames composed of R speakers, the parameters of

h

s
M

V

U

A

v̄

Fig. 1. Graphical representation of the proposed speech factor modeling.

the proposed model Θ = {M,A,U,V, b, c,σ} are simulta-
neously estimated so as to maximize the log-likelihood as

L = log p(X) =
∑
t

log
∑
h

p(vt,ht, st). (11)

In this paper, the parameters are iteratively updated using
stochastic gradient descent in the similar way to the training
of an RBM. Partially-differentiating the log-likelihood L in
terms of each parameter, we obtain

∂L
∂M

=〈
∑
k

A>k v̄h
>sk〉data − 〈

∑
k

A>k v̄h
>sk〉model (12)

∂L
∂Ak

=〈v̄h>skM>〉data − 〈v̄h>skM>〉model (13)

∂L
∂U

=〈sv̄>〉data − 〈sv̄>〉model (14)

∂L
∂V

=〈hs>〉data − 〈hs>〉model (15)

∂L
∂b

=〈v̄〉data − 〈v̄〉model (16)

∂L
∂c

=〈h〉data − 〈h〉model (17)

∂L
∂σ

=
1

σ3
◦
(
〈v ◦ v − 2v ◦

(
b+ U>s+ AsMh

)
〉data

− 〈v ◦ v − 2v ◦
(
b+ U>s+ AsMh

)
〉model

)
,

where 〈·〉data and 〈·〉model denote expectations of the empirical
data and the inner model, respectively. It is generally difficult
to compute the expectations of the inner model; however, we
can still use contrastive divergence (CD) [24] and efficiently
approximate them with the expectations of the reconstructed
data 〈·〉recon.. In the CD scheme, the reconstructed data is
calculated using randomly-sampled variables, starting from
the original data. In this paper, we sample variables of each
descriptor h, s, v in order using Gibbs chain; e.g., we
first sample h̃ as h̃ ∼ p(h|s,v), secondly sample s̃ as
s̃ ∼ p(s|v, h̃), thirdly sample ṽ as ṽ ∼ p(v|h̃, s̃), etc.

III. APPLICATION TO ARBITRARY-SOURCE VC
The goal of arbitrary-source VC is to change the input

speech of any persons as if the particular target speaker
spoke. After the training discussed in the previous section, we
have the model parameters Θ = {M,A,U,V, b, c,σ} that
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includes the parameters of the target speaker o. Now given
the frame-wise acoustic features v(i) of the arbitrary speaker’s
speech that we want to convert to that of the target speaker
v(o) with the identity vector s(o) where only oth element takes
the value of 1 (otherwise 0), we estimate v(o) using MAP
(maximum a posteriori) as follows:

v̂(o) , argmax
v(o)

p(v(o)|v(i), s(o))

= argmax
v(o)

∑
h

p(h|v(i), s(o))p(v(o)|h,v(i), s(o))

' argmax
v(o)

p(ĥ|v(i), s(o))p(v(o)|ĥ,v(i), s(o))

= argmax
v(o)

p(v(o)|ĥ, s(o))

= b+ U>o: + AoMĥ,

(18)

where we use ĥ , E[h|v(i)], which is regarded as the most
likely phonetic features calculated from the input acoustic
features v(i). Thanks to the definition of s as variables, we
can rewrite ĥ as follows:

ĥ , E[h|v(i)]
=
[
p(hj = 1|v(i))

]
=

[ ∑
s p(v

(i), hj = 1, s)∑
h′
∑

s′ p(v(i),h′, s′)

]
= f(c+ g(V + v̄(i)>U> + M>[A>k v̄

(i)])),

(19)

where v̄(i) = [
v
(i)
i

σ2
i

] and g(X) = log
∑
k e

X:k indicates
an element-wise generalized softplus function. In short, the
proposed VC scheme has two steps: 1) calculate Eq. (19)
to obtain speaker-independent phonetic features included in
the input acoustic vector, and 2) calculate Eq. (18) to obtain
desired acoustic features using the phonetic features and the
target speaker’s parameters. As Eq. (19) indicates, our VC
method does not specify the source speaker’s parameters. In
conventional methods, such as SATBM, the speaker-identity
vector s is not defined as variables; therefore, if we want to
achieve the arbitrary-source VC in such methods, we have to
first estimate the speaker, and then convert the speech spec-
ifying the source speaker. This approach is possibly largely
affected by the accuracy of the speaker recognition.

IV. EXPERIMENTAL EVALUATION

A. System configuration

In our VC experiments, we evaluated the performance of
the proposed model, using ASJ Continuous Speech Corpus for
Research (ASJ-JIPDEC3). In the training stage, we randomly
selected and used speech data of 5 sentences (approx. 160k
frames) uttered by R = 58 speakers (27 males and 31 females)
from the set A in the corpus. In the conversion stage, we ran-
domly picked up a male speaker (identified with “ECL0001”
in the dataset) and a female speaker (“ECL1003”) from the
training set as a source and a target speakers, respectively,

3http://research.nii.ac.jp/src/ASJ-JIPDEC.html

TABLE I
COMPARISON OF NON-PARALLEL YET SPEAKER-SPECIFIED VC METHODS.

Method ARBM SATBM Proposed
MDIR [dB] 2.11 2.66 3.07

TABLE II
PERFORMANCE OF THE PROPOSED ARBITRARY-SOURCE VC METHOD.

MDIR [dB]
Correct speaker specified 3.07
Different speaker specified 2.79
Arbitrary source approach 3.03

unless otherwise stated. As an acoustic feature vector, we
used 32-dimensional mel-cepstral features that were calculated
from 513-dimensional WORLD [29] spectra without dynamic
features. In the training of the system, we used 16 softmax
hidden units (phonetic features), a learning rate of 0.01, a
momentum of 0.9, and a batch-size of R × 100(= 5800),
and set the number of iterations as 200. For the evaluation of
the proposed method, we used parallel data (of different 10
sentences from in the training data) of the source and the target
speakers, which was created using dynamic programming. But
again, note that every speech data used for the training is NOT
parallel.

Mel-cepstral distortion (MCD) is generally used for ob-
jective evalulation in VC. However, we used mel-cepstral
distortion improvement ratio (MDIR) instead in this paper
because it does not make sense to see the distance between
the spectral features in mel-scale of the source and the
target speakers when we want to recognize the differences
in speaker identities, and because the scale of MCD varies in
the evaluation data. The MDIR is defined as follows:

MDIR[dB] =
10
√

2

ln 10
(
∥∥∥v(o) − v(i)∥∥∥2 − ∥∥∥v(o) − v̂(o)∥∥∥2)

where v(i), v(o), and v̂(o) are mel-cepstral features at a frame
of the source speaker’s speech, target speaker’s speech, and
converted speech, respectively. The MDIR measures how the
input speech was improved toward the target speech in the
mel-cepstum domain; the higher the value of MDIR is, the
better the performance of the VC is. The MDIR was calculated
for each frame from the parallel data of 10 sentences, and
averaged.

B. Results and discussion

In the first experiment, we compared our method with the
conventional VC methods, the ARBM [21] and the SATBM
[22], in the non-parallel yet speaker-specific paradigm. For
the speaker-specific VC in the proposed method, we replace
the calculation of the phonetic features in Eq. (19) with
ĥ , E[h|s(i),v(i)] where s(i) is the one-hot vector that
takes value of 1 only at the index of the source speaker,
which can be easily calculated from Eq. (9); i.e., ĥ =
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f(c+Vs(i)+M>A>
s(i) v̄

(i)). The results are shown in Table I.
As shown in Table I, our method outperformed the other
conventional methods by a large margin. We can say that our
model performed better because of the explicit modeling of
acoustic, phonetic, and speaker features with considering up
to three-way connections between the speech factors. Just for a
reference, we also compared with a popular GMM-based VC
with 64 mixtures using parallel data of 5 sentences, which
got 3.86 MDIR. However, such approach takes a benefit from
using parallel data and should not be directly compared with
non-parallel approaches just in terms of VC quality.

In the second experiment, we investigated how well our
arbitrary-source approach based on Eqs. (18)(19) worked.
Table II compares the performance of the arbitrary-source VC
and the source-specified VC that includes two cases where the
correct source speaker is specified and a different speaker is
specified as a source speaker. For the different speaker, we
used “CAN0001”, which was also a male speaker that was
included in the training data. As shown in Table II, when we
specified a wrong speaker as a source speaker, the performance
degraded. Meanwhile, even though we did not specify the
correct speaker in the arbitrary-source approach, we obtained
similar results to the speaker-specified VC with the correct
speaker specified.

V. CONCLUSION

In this paper, we presented an easy-to-handle VC method
that does not require any parallel data during training and
the specification of the source speaker during conversion. In
our approach, we explicitly model the strength of the connec-
tions among fundamental speech factors: acoustic, phonetic,
and speaker features, using three-way restricted Boltzmann
machine (3WRBM). We also proposed the arbitrary-source
VC formulation in the probabilistic framework, which results
in two step estimation of the phonetic features given input
acoustic features and the acoustic features of the target speaker.
In our VC experiments, we obtained better performance with
our model than the conventional non-parallel VC approaches
in objective criteria. We also showed that our arbitrary-source
method well performed, where the results were quite similar to
those of the source-specified approach. In the future, we will
investigate the arbitrary-source VC performance with variation
in speakers, gender, age, etc.
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