
Adaptive Hierarchical Space Partitioning for Online
Classification

O. Fatih Kilic∗, N. Denizcan Vanli†, Huseyin Ozkan‡ Ibrahim Delibalta§ and Suleyman S. Kozat∗
∗Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey

{kilic,huseyin,kozat}@ee.bilkent.edu.tr
†School of Electrical and Computer Engineering, Massachusetts Institute of Technology, Cambridge, MA

denizcan@mit.edu
‡Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA

hozkan@mit.edu
§Turk Telekom Labs, Istanbul, Turkey
ibrahim.delibalta@turktelekom.com.tr

Abstract—We propose an online algorithm for supervised
learning with strong performance guarantees under the empirical
zero-one loss. The proposed method adaptively partitions the
feature space in a hierarchical manner and generates a powerful
finite combination of basic models. This provides algorithm to
obtain a strong classification method which enables it to create
a linear piecewise classifier model that can work well under
highly non-linear complex data. The introduced algorithm also
have scalable computational complexity that scales linearly with
dimension of the feature space, depth of the partitioning and
number of processed data. Through experiments we show that the
introduced algorithm outperforms the state-of-the-art ensemble
techniques over various well-known machine learning data sets.

I. INTRODUCTION

Due to the recent advances in information technologies, we
need to process data that is streamed at extremely fast rates
and, usually, presented in unstructured complex forms [1],
[2]. In particular, we propose a novel and highly efficient on-
line classification algorithm for an arbitrary stream of possibly
correlated observations.

Our algorithm uses piecewise linear functions to approxi-
mate complex (i.e., strongly nonlinear) classification bound-
aries and exploit the local regularities to mitigate convergence
issues. In particular, we use a hierarchical model to generate
a set of different feature space partitions, where we sequen-
tially train a simple linear classifier at each region of every
partition. Hence, each partition yields a different nonlinear
classification model (which we call a base classifier) and all
such models constitute a competition class of base classifiers
in our framework. We parameterize this competition class
over the partitioning parameters (i.e., the region separators)
and then sequentially optimize our competition class over
these parameters using the stochastic gradient descent method.
By this optimization, our competition class sequentially and
continuously improves itself -in the course of the data stream-
by adjusting the partition structure.

The proposed online classifier combines the outputs of all
base classifiers at each instance and generates its classification
output. We prove that by this combination, the proposed algo-
rithm asymptotically achieves the performance of the best base

classifier without any statistical assumptions on the data. Our
results hold for every possible data stream of arbitrary length
regardless of the underlying data generation process. The
computational complexity of the proposed algorithm scales
linearly with the dimensionality of the data and the depth of
the hierarchical models uniformly for all data instances. Since
we use a finite combination of linear models, our algorithm
generalizes well and does not overfit (or limitedly overfits) [3],
[4].

II. PROBLEM DESCRIPTION

We study online binary classification, where we observe
feature vectors {xt}t≥1 and determine their labels {yt}t≥1
in an online manner.1 Here, we aim to construct an online
classifier ft(xt), where xt ∈ Rp and yt ∈ {−1, 1}, such that
the empirical loss of this classifier, i.e.,

LT (ft) ,
T∑
t=1

1{ft(xt)6=yt}, (1)

is asymptotically as small as the empirical loss of the best clas-
sifier C(φ) from a competition class S(φ) of base classifiers
for any unknown sequence length T . The set of base classifiers
S(φ) is a parameter dependent competition class that can be
optimized over φ, where φ is not a specific parameter for a
base classifier, but instead it directly optimizes the competition
class. In this manner, the classifier ft competes against the best
competitor that itself constantly improves.

In order to measure the relative performance of ft with
respect to the performance of a base classifier f (C)

t , where
C ∈ S(φ) (we drop the φ-dependency of the base classifiers
for notational simplicity), we use the following regret

RT (ft; f
(C)
t) ,

1

T

[
LT (ft)− LT (f (C)

t)
]

(2)

for any arbitrary stream length of T . Our aim is then to
minimize this regret in a twofold optimization framework in

1All vectors are column vectors and denoted by boldface lower case letters.
Throughout the paper, the time index appears as a subscript.

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 2290

𝑓𝑡,𝜆 𝑥𝑡

𝑠𝑡,𝜆(𝑥𝑡)

𝑓𝑡,1 𝑥𝑡

𝑠𝑡,1(𝑥𝑡)

𝑓𝑡,11 𝑥𝑡

𝑠𝑡,11(𝑥𝑡)

𝑓𝑡,10 𝑥𝑡

𝑠𝑡,10(𝑥𝑡)

𝑓𝑡,0 𝑥𝑡

𝑠𝑡,0(𝑥𝑡)

𝑓𝑡,01 𝑥𝑡

𝑠𝑡,01(𝑥𝑡)

𝑓𝑡,00 𝑥𝑡

𝑠𝑡,00(𝑥𝑡)

𝑁𝑜𝑑𝑒 𝜆

𝑁𝑜𝑑𝑒 11

𝑁𝑜𝑑𝑒 1

𝑁𝑜𝑑𝑒 0

𝑁𝑜𝑑𝑒 10

𝑁𝑜𝑑𝑒 01

𝑁𝑜𝑑𝑒 00

Fig. 1: The generalized view of the complete tree structure.
ft,n(·) represents the classifier of node n and st,n(·) represents
the separator function corresponding to node n.

the sense that both the classifier selection weighting over S(φ)
and the optimization parameter φ are adaptively learned.

III. CONSTRUCTION OF THE COMPETITION CLASS

To efficiently construct the set of base classifiers that can be
optimized via φ, we hierarchically partition the feature space
according to a parameter vector φ. In particular, we bisect the
feature space using a separator function (which is a function
of φ). Then, we continue to bisect the resulting regions
using different separator functions and construct a complete
hierarchical model (i.e., a partitioning tree). In this manner,
for each inner node of the tree, there exists a corresponding
separator function, which bisects the region represented by
that node. We also assign a simple region classifier (e.g., a
linear and online classifier such as the perceptron) to each
node of the tree. As an example, a depth-2 tree is depicted in
Figure 1, where ft,n represents the region classifier and st,n
represents the separator function of node n at time t. In this
figure, the root node (or node λ) represents the entire feature
space, where the separator function st,λ bisects this region and
creates node 0 and node 1. Similarly, each of these nodes are
also bisected via st,0 and st,1 creating the children nodes 00,
01 and 10, 11, respectively.

We emphasize that the selection of the region classifiers and
separator functions are completely up to preference and can be
arbitrary. However, throughout the paper, we use the percep-
trons as our node classifiers and the hyperplanes as our node
separators. In particular, the separator st,n is a function of φt,n
such as the sigmoid function st,n(xt) = (1+exp(φTt,nxt))

−1,
where φt,n represents the angle of the normal line to the
separating hyperplane for each node n. In this manner, the
parametrization of the set of base classifiers is performed via
the parameter vector φ = {φt,n}. According to the definition
of the separator functions, each instance xt follows a path
starting from the root node to a leaf node through a certain
branch such that if φTt,nxt ≤ 0 at a node n, then xt follows
the 1-branch; otherwise, it follows the 0-branch. Meanwhile,
at each visited node, it is classified by the region classifier
ft,n.

By taking the union of non-overlapping regions, one can
construct different base classifiers. As an example, in Figure
1, nodes 0 and 1 can define a base classifier. Similarly, nodes
00, 01, and 1 can be used to construct a base classifier. In
this manner, a base classifier C ∈ S(φ) classifies the instance
xt using the output of the region classifier ft,n(xt), where n
is the leaf node (containing xt) of the subtree that generates
C. Since for a depth-D tree, there exist approximately 1.52

D

different subtrees [5] and any subtree (pruning) on a complete
tree of depth-D can be used to classify the instance xt, we
consider each subtree as a base classifier and construct our set
of base classifiers S(φ). We emphasize that since the separator
functions elegantly partition the feature space, the resulting
base classifiers are of highly nonlinear models.

IV. ONLINE ADAPTIVE HIERARCHICAL SPACE
PARTITIONING CLASSIFIER (AHSP)

Based on the aforementioned partitioning of the feature
space, we construct the final classifier ft by combining the
outputs of all base classifiers in S(φ). In this manner, as the
data length T goes to infinity, the regret in (2) goes to zero,
hence ft achieves the performance of the best base classifier.
While taking a weighted combination of base classifiers,
our algorithm also adapts the partitioning of the feature
space (by updating φ) to minimize its classification error.
We provide the construction of the algorithm (and also the
detailed construction of the base classifiers) in the proof of
the following theorem, where we also present our theoretical
results.

Theorem 1: Let {xt}t≥1 and {yt}t≥1 be arbitrary and
real-valued sequence of feature vectors and their labels,
respectively. The online classifier in Alg. 1, when applied to
these data sequences, sequentially yields

max
C∈S(φ)

E
[
RT (ft; f

(C)
t)

]
≤ O

(
2D

T

)
, (3)

for any T with a computational complexity O(Dp), where p
represents the dimensionality of the feature vectors and the
expectation is with respect to the randomization parameters.

Proof of Theorem 1 and Construction of the Algorithm
Notation: We introduce the following notation to efficiently

specify the nodes. Each node of the tree is labeled with a
binary string n = m1 . . .md, where mi = {0, 1} is a binary
letter and d represents the depth of the node. For any inner
node n, we label its left and right children as n0 and n1,
respectively. We denote the empty string by λ. Moreover,
we call a node n′ = m′1 . . .m

′
d′ as the prefix of node

n = m1 . . .md if d′ ≤ d and m′i = mi for all i = 1, . . . , d′.
Using this definition, we denote ni as the depth-i prefix to
node n, where i = {0, . . . , d}. This labeling operation can be
observed for a depth-2 tree in Figure 1.

We start the proof by explicitly constructing the base
classifiers. We next introduce a low complexity method to
achieve the best classifier among doubly exponential number

2016 24th European Signal Processing Conference (EUSIPCO)

2291

of different base classifiers. Then, we incorporate an adaptive
method to optimize φ in order to minimize the classification
of the final algorithm.

Construction of the Base Classifiers: Suppose that the
instance xt has fallen into the region represented by some
leaf node n. Then, xt has also fallen to the nodes n0, . . . , nD,
where nD = n and n0 = λ. Without loss of generality,
assume that the node nd is a leaf node of the subtree
generating the base classifier C, then one can simply set
f
(C)
t (xt) = ft,nd

(xt) as done in many prior work, cf. [6], [7].
In such conventional works, each instance is directly assigned
to a node assuming that the base classifier will be able to
classify that instance accurately.

However, in this paper, we acknowledge that a node classi-
fier may not be able to classify each instance accurately since
the partitioning of the feature space is set before the processing
starts. Therefore, we assign each instance to a node with a
certain weight (or probability) in order to be able to adaptively
reconstruct the feature space partitioning. To this end, we
define a parameter called “confidence rate” to measure the
heaviness of the path between nodes nd and λ. This parameter
is defined as the multiplication of the separator functions of
the nodes from the respective leaf node to the root node, which
represents the confidence that xt should be classified using the
region classifier of node nd. In particular, this confidence rate
is defined as follows

ct,nd
(xt) ,

d−1∏
i=0

st,ni,mi+1(xt), (4)

where st,ni,mi+1
(·) represents the value of the partitioning

function corresponding to node ni towards the mi+1 direction,
i.e.,

st,ni,mi+1
(xt) ,

{
st,ni(xt) , if mi+1 = 0

1− st,ni(xt) , if mi+1 = 1
.

Intuitively, this confidence rate is low (i.e., close to (0.5)d)
when the feature vector is close to the region boundaries,
hence we may consider to classify that feature vector by
another node classifier (e.g., the classifier of the sibling node).
Therefore, we consider that the classification output of node
nd can be trusted with a probability of ct,nd

(xt). Providing
an error margin to the node classifier ft,nd

, we consider
that the complementary label −ft,nd

(xt) has a probability
of 1 − ct,nd

(xt). Then, the final classification output of
node nd is set to {ft,nd

(xt),−ft,nd
(xt)} with probabilities

{ct,nd
(xt), 1 − ct,nd

(xt)}, respectively. With abuse of nota-
tion, we continue to denote the node classifier by ft,nd

(xt).
Finally, we set the output of the base classifier as follows
f
(C)
t (xt) = ft,nd

(xt). By this procedure, we significantly
increase the degree of freedom of the base classifiers, which
helps us efficiently learn the feature space partitioning.

Direct Combination of Base Classifiers: Having constructed
all base classifiers, we use a mixture-of-experts approach
to achieve the performance of the best base classifier that

minimizes the accumulated classification error. Before pre-
senting this method, we first introduce certain definitions.
Let the instantaneous expected empirical loss of the proposed
classifier ft at time t be denoted by `t(ft) , E

[
1{ft(xt)6=yt}

]
,

with the expectation taken with respect to the randomization
parameters of the classifier ft. Then, the expected empirical
loss of this classifier over a sequence of length T can be found
by LT (ft) =

∑T
t=1 `t(ft).

We also define the effective region of each node nd at time
t as Rt,nd

,
{
x : Pt,nd

(x) ≥ (0.5)d
}

. Then, according to
the introduced structure of base classifiers, node nd classifies
an instance xt only if xt ∈ Rt,nd

. Therefore, the time
accumulated expected empirical loss of any node n during
the data stream is given by

LT,n ,
∑

t≤T :xt∈Rt,n

`t(ft,n). (5)

Similarly, the time accumulated expected empirical loss of a
base classifier C ∈ S(φ) is found as L(C)

T ,
∑
n∈L(C) LT,n,

where L(C) is the set of the leaf nodes of the subtree
generating C.

Using these definitions, we introduce a direct im-
plementation of the mixture-of-experts approach as fol-
lows. We set the final classification output of our algo-
rithm as ft(xt) =

∑
C∈S(φ) w

(C)
t f

(C)
t , where w

(C)
t =

2−J(C) exp(−b L(C)
t−1)

/
Zt−1, and prove that we can achieve

the upper bound in (3) with these weights. Here, b ≥ 0
is a constant controlling the learning rate of the algorithm,
J(C) ≤ 2|L(C)| − 1 represents the number of bits required
to code the classifier C (which satisfies

∑
C∈S(φ) J(C) = 1),

and Zt =
∑
C∈S(φ) 2

−J(C) exp(−b L(C)
t) is the normaliza-

tion factor. We emphasize that although ft(xt) ∈ [−1, 1],
the final output of the classifier can be set to {1,−1} with
probabilities {(1 + ft(xt))/2, 1 − ft(xt))/2}, yielding the
desired expectation.

According to the definition of Zt, the normalization param-
eter at the last iteration (i.e., the iteration at time T) satisfies

−1

b
logZT ≤ L(C)

T +
J(C) log 2

b
, (6)

∀C ∈ S(φ). We then make the following observation

ZT =
T∏
t=1

Zt
Zt−1

=
T∏
t=1

{ ∑
C∈S(φ)

w
(C)
t ht(f

(C)
t)

}
, (7)

where the second equation follows from the definition of
Zt, w

(C)
t , 2−J(C) exp(−b L(C)

t−1)
/
Zt−1, and ht(f

(C)
t) ,

exp(−b `t(f (C)
t)). Here, we note that one can write

`t(f
(C)
t) = E

[
1{ft(xt)6=yt}

]
=

1

4
E

[(
yt − f (C)

t (xt)
)2]

.

Then, taking the second derivative of ht(f
(C)
t) with respect to

f
(C)
t , we obtain

h′′t (f
(C)
t) =

b

4
ht(f

(C)
t)

(
bE

[(
yt − f (C)

t (xt)
)2]
− 2

)
.

2016 24th European Signal Processing Conference (EUSIPCO)

2292

Algorithm 1 Online Adaptive Hierarchical Space Partitioning
Classifier (AHSP)

1: for t ≥ 1 do
2: Propagate xt from the root to the leaf and obtain the

visited nodes n0, . . . , nD.
3: Calculate ct,nd

(xt) for all d ∈ 0, ..., D using (4).
4: Calculate wt,nd

(xt) for all d ∈ 0, ..., D using (12).
5: Draw a classification output {1,−1} with probabili-

ties ct,nd
(xt) and 1 − ct,nd

(xt), respectively, to find
ft,nd

(xt).
6: Combine the node outputs ft,nd

(xt) with weights
wt,n0

, . . . , wt,nD
, and choose the final output randomly

according to the combination.
7: Update the region classifiers (perceptron) at the visited

nodes [8].
8: `t(ft)← 1{ft(xt)6=yt}
9: Update Lt,nd

for all d ∈ 0, ..., D using (5).
10: Apply the recursion in (10) to update Mt+1,nd

for all
d ∈ 0, ..., D.

11: Update the separator parameters φ using (13).
12: end for

Note that we have b
4ht(f

(C)
t) ≥ 0, hence h′′t (f

(C)
t) ≤ 0 if

b ≤ 2/E[(yt − f (C)
t (xt))

2]. Since E[(yt − f (C)
t (xt))

2] ≤ 4,
we have h′′t (f

(C)
t) ≤ 0 for b ≤ 0.5. Then, considering (7), we

point out that
∑
C∈S(φ) w

(C)
t = 1, hence we have

∑
C∈S(φ)

w
(C)
t ht(f

(C)
t) ≤ ht

 ∑
C∈S(φ)

w
(C)
t f

(C)
t

 , (8)

from the Jensen’s inequality. Therefore, combining (6), (7),
and (8), we obtain

LT (ft)

T
≤
L
(C)
T

T
+
J(C) log 2

Tb
,

which is the desired upper bound in (3) since J(C) ≤ 2D+1−
1, ∀C ∈ S(φ).

An Efficient Combination Method: Although we achieve the
desired upper bound in (3) with this combination method, the
final algorithm ft -in its current form- requires a computational
complexity O(1.52

D

p) since |S(φ)| ≈ 1.52
D

. However, the
set {f (C)

t (xt)}C∈S(φ) = {ft,nd
(xt)}0≤d≤D of all possible

classification decisions for xt ∈ Rt,nD
has cardinality as small

as O(D). Namely, evaluating all the base classifiers in S(φ) at
the instance xt to produce ft(xt) is unnecessary. In fact, the
computational complexity for producing ft(xt) can be reduced
from O(1.52

D

p) to O(Dp) with the same exact combination
over ft,nd

’s using the new set of weights wt,nd
, which can be

straightforwardly derived as

wt,nd
=

∑
C∈S(φ) : f

(C)
t (xt)=ft,nd

(xt)

w
(C)
t . (9)

To efficiently calculate (9) with complexity O(Dp), we
consider the universal coding scheme and let

Mt,n ,

{
exp (−bLt,n) , if n has depth D

1
2

[
Mt,n0Mt,n1 + exp (−bLt,n)

]
, otherwise

(10)
for any node n and observe that we have Mt,λ = Zt
[9]. Therefore, we can use the recursion (10) to obtain the
denominator of the combination weights w(C)

t . To efficiently
calculate the nominator of (9), we introduce another interme-
diate parameter as follows. Letting n′d denote the sibling of
node nd, we recursively define

κt,nd
,


1
2 , if d = 0
1
2Mt−1,n′d κt,nd−1

, if 0 < d < D

Mt−1,n′d κt,nd−1
, if d = D

, (11)

∀d ∈ {0, . . . , D}, where xt ∈ Rt,nD
. Using the intermediate

parameters in (10) and (11), it can be shown that we have

wt,nd
=
κt,nd

exp (−b Lt,nd
)

Mt,λ
. (12)

Hence, we can obtain the final output of the algorithm as
ft(xt) =

∑D
d=0 wt,nd

ft,nd
(xt) with computational complex-

ity O(D).
Learning the Space Partitioning: We use the final output of

the introduced algorithm and update the region boundaries of
the tree to minimize the final classification error. To this end,
we use the stochastic gradient descent method to update φ as
follows

φt+1,nd
= φt,nd

−(−1)md+1 η (xt−ft(xt))πt,nd
st,nd,m′d+1

(xt) xt.
(13)

∀d ∈ {0, . . . , D−1}, where η denotes the learning rate of the
algorithm, m′d+1 represents the complementary letter to md+1

from the binary alphabet {0, 1}, and

πt,nd
,

{
ft,nd

(xt) , if d = D − 1

πt,nd+1
+ ft,nd

(xt) , if d < D − 1

is an intermediate parameter to perform the update in (13)
with a computational complexity O(p) for each node nd,
d = 0, . . . , D − 1, which results in a overall computational
complexity of O(Dp).

This concludes the proof of Theorem 1 and the pseudocode
of the introduced algorithm (AHSP) can be found in Algorithm
1. �

V. EXPERIMENTS

In this section, we compare the empirical performance of
our method (AHSP) with some well known the state-of-the-
art ensemble techniques which are AdaBoost algorithm (ABA)
and GradientBoost algorithm (GBA) [10]. For our algorithm
(AHSP), the learning rate is set to η = 0.05 and a depth-
4 tree is used in all of the experiments. The perceptron
algorithm [8] is used as the weak learners in the compared
methods and as the region classifiers in our method. Note that
the compared methods have linear complexity in the number

2016 24th European Signal Processing Conference (EUSIPCO)

2293

TABLE I: Average error rates on benchmark data sets. The
first row in each set represents results with normalized data,
i.e., each attribute is linearly mapped to [−1, 1] and the
second row represents the results with truncated data, i.e.,
xt ← xt

max(‖xt‖,1) .

Veriler (Size/Dimension) ABA GBA AHSP
Heart (270/13) 0.2396 0.2328 0.2009

0.2400 0.2314 0.2083
Breast Cancer (683/10) 0.0544 0.0571 0.0465

0.0538 0.0533 0.0458
Diabetes (768/8) 0.3243 0.3349 0.2575

0.3258 0.3335 0.2728

of weak learners. In contrast, although our algorithm uses
2D+1 − 1 local models, it has linear complexity in the tree
depth D.

We have tested these algorithms on some of the data sets
presented in [10]. Each method is sequentially presented with
the same data sequence and we calculate the error rate for
the complete stream. This process is repeated for 100 random
permutations (10 for the data sets of length larger than 10000)
and the average error rates are reported in Table I. As we
can see here that the algorithm we presented here (AHSP)
outperforms the state-of-the-art ensemble algorithms that is
because AHSP algorithm designed to work well over complex
data sets with strong non-linearities.

VI. CONCLUSION

We proposed an online supervised learning algorithm that
is highly efficient in terms of computational scalability and
appropriate for big data applications. In the proposed method,
we combined the outputs of the basic linear classifiers defined
in local regions to generate the decision. We showed that our
approach jointly optimizes the partitioning structure and the
corresponding local linear models. Using the resulting highly
dynamic hierarchical structure, we proved an upper bound for
the regret of the system for any given data stream of arbitrary
length. We present a comprehensive experimental comparison
and illustrate that our algorithm significantly outperforms the
state-of-the-art techniques on various benchmark data sets.

VII. ACKNOWLEDGMENT

This work is in part supported by Turkish Academy of Sci-
ence Outstanding Researcher Programme and Tubitak Contract
No: 113E517.

REFERENCES

[1] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,” in
Advances in Neural Information Processing Systems, 2008, pp. 161–168.

[2] T. Mohamadpoor and B. Pfister, “A boosting framework on grounds of
online learning,” in Advances in Neural Information Processing Systems,
2014, pp. 2267–2275.

[3] Joseph Wang and Venkatesh Saligrama, “Local supervised learning
through space partitioning,” in Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 91–99. 2012.

[4] N. D. Vanli and S. S. Kozat, “A comprehensive approach to universal
piecewise nonlinear regression based on trees,” IEEE Transactions on
Signal Processing, vol. 62, no. 20, pp. 5471–5486, Oct 2014.

[5] A. V. Aho and N. J. A. Sloane, “Some doubly exponential sequences,”
Fibonacci Quarterly, vol. 11, pp. 429–437, 1970.

[6] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear
prediction via context trees,” IEEE Transactions on Signal Processing,
vol. 55, no. 7, pp. 3730–3745, 2007.

[7] Wei-Yin Loh, “Classification and regression trees,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 14–23, 2011.

[8] Yoav Freund and Robert E Schapire, “Large margin classification using
the perceptron algorithm,” Machine learning, vol. 37, no. 3, pp. 277–
296, 1999.

[9] F. M J Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree
weighting method: basic properties,” IEEE Transactions on Information
Theory, vol. 41, no. 3, pp. 653–664, May 1995.

[10] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu, “An online boosting
algorithm with theoretical justifications,” International Conference on
Machine Learning, 2012.

2016 24th European Signal Processing Conference (EUSIPCO)

2294

