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ABSTRACT

In this paper, we propose a closed-form solution for time-

difference-of-arrival (TDOA) based joint source and sensor
localization in two-dimensional space (2D). This closed-
form solution is a combination of two closed-form solutions
for time-of-arrival information recovery and time-of-arrival

(TOA)-based joint source and sensor localization in 2D. In
our previous works, we derived closed-form solutions for
TOA-based joint source and sensor localization and near-
closed-form solutions for TOA information recovery in three-
dimensional space (3D). Since the localization in 2D is sim-
pler than that in 3D, closed-form solutions for both problems
in 2D are derived in this paper. The root-mean-square er-
rors (RMSEs) achieved by the proposed closed-form solution
are compared with the Cramér-Rao lower bound (CRLB) in
synthetic experiments. The results show that the proposed
solution works well in both low-noise and noisy cases and
with both small and large numbers of sources and sensors.

Index Terms— Time Difference of Arrival, Time of Ar-
rival, Joint Source and Sensor Localization

1. INTRODUCTION

With the rapid development of industrial technology and be-
cause ad hoc microphone arrays have a wide range of appli-
cations, joint source and sensor localization has recently re-
ceived significant attention from the scientific community.

Fundamentally, joint source and sensor localization can
be classified into three cases: (i) time-of-arrival (TOA)-based

localization, (ii) time-difference-of-arrival (TDOA)-based lo-

calization, and (iii) asynchronous observation-based local-

ization. To obtain TOA information, the sources and sensors
must be synchronous, whereas to obtain TDOA information,
synchronization among the sources or among the sensors is
only required. If both the sources and the sensors are asyn-
chronous, the problem is more difficult. In this paper, we
focus on the second problem, TDOA-based joint source and

sensor localization. When the sources and sensors are and are
not in the same plane, the localization is called localization in
2D and in 3D, respectively.

Since the objective function in the joint localization prob-
lem is non linear and has many local minima, closed-form
solutions are very important. Recently, some closed-form
solutions have been derived. For example, closed-form so-
lutions for TOA-based localization can be derived by the
multidimensional scaling (MDS) method [1, 2] when for any
source there is a sensor very close to it. In this case TOA
measurements can provide the distances between any pair
of sensors (or sources). The mathematical properties of the
localization in this case were studied in [3], and an excellent
review of its applications was given in [4]. Crocco et al. [5]
proposed an attractive method for deriving a closed-form so-
lution for TOA-based localization with the addition of a weak
condition that one source and one sensor must be very close.
Kuang and coworkers [6, 7] proposed non-iterative methods,
rather than closed-form or near-closed-form solutions, for
TOA-based and TDOA-based localizations without adding
any conditions. Their results provide a good mathematical
perspective for these localization problems. On the basis of
their results, in our previous works, we proposed closed-form
solutions for TOA-based localization [8, 9] and near-closed-
form solutions for TDOA-based localization [10]. An exper-
imental evaluation of TOA-based localization [11] showed
that the solutions given in [8, 9] worked very well. All the
above methods are for localizations in 3D, and are based on
the low-rank property of a TOA-distance matrix. However,
this property is different in 3D and 2D, hence these methods
cannot be used directly in 2D. For example, based on the
techniques given in [6], Burgess et al. [12] studied TOA-
based localizations when the sources or sensors are in 2D
because the methods given in [6] do not work for these cases.

To our knowledge, although localizations in 2D are sim-
pler than those in 3D, closed-form solutions for TDOA-based
joint source and sensor localization have not yet been found.
Note that, closed-form solutions for TDOA-based source lo-
calization are found in [13]. Since localization in 2D has a
wide range of applications, it is worth studying. In this pa-
per, closed-form solution for TDOA-based localization in 2D
is studied and derived. More precisely, this closed-form solu-
tion is the closed-form solution for TOA-distance matrix re-
covery studied in Subsection 3.1 and the closed-form solution
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for TOA-based localization in 2D studied in Subsection 3.2.
The CRLB for TDOA-based localization in 2D is obtained
and compared with RMSEs achieved by the proposed method
in Section 4. A conclusion is also presented in this section.

2. TDOA-BASED LOCALIZATION IN 2D

2.1. Problem formulation

TDOA-based localization in 2D is stated simply as follows:
given a real matrix Γ = (τmn)M×(N−1), find M points
{(um, vm)}Mm=1 and N points {(hn, kn)}Nn=1 in R

2 such that
for all m and n∥∥∥∥

(
um

vm

)
−

(
hn+1

kn+1

)∥∥∥∥
2

−
∥∥∥∥
(
um

vm

)
−

(
h1

k1

)∥∥∥∥
2

= τmn, (1)

where ‖ · ‖2 denotes the Euclidean distance. If (1) is satisfied,
Γ is called a TDOA-distance matrix, and {(um, vm)}Mm=1 and
{(hn, kn)}Nn=1 are called TDOA-based solutions of Γ.

Let D = (dmn)M×N be a nonnegative matrix where

dmn =

∥∥∥∥
(
um

vm

)
−
(
hn

kn

)∥∥∥∥
2

=
√

(um−hn)2 + (vm−kn)2. (2)

D is called a TOA-distance matrix, and {(um, vm)}Mm=1 and
{(hn, kn)}Nn=1 are also called TOA-based solutions of D.

Equations (1) and (2) imply that for all m,n,

τmn = dm,n+1 − dm1. (3)

Thus, if dm1 is given for all m, the TOA-distance matrix D
can be recovered from the TDOA-distance matrix Γ. On the
basis of this idea, in this paper we solve TDOA-based local-
ization in 2D by solving the following two problems: (i) re-

coveringD from Γ (recovering the TOA-distance matrix) and
(ii) solving TOA-based localization in 2D. The main contri-
bution of this paper is to solve these two problems as closed-
form solutions, and the key to obtaining these solutions is the
low-rank property of a TOA-distance matrix, which is dis-
cussed in the following subsection (see [9, 14]).

2.2. Low-rank property of a TOA-distance matrix

Equation (2) implies that

d2mn − d2m1 − d21n + d211

= −2(um − u1)(hn − h1)− 2(vm − v1)(kn − k1).
(4)

Let us denote

X =

⎛
⎜⎝

u2 − u1 v2 − v1
...

...
uM − u1 vM − v1

⎞
⎟⎠

T

, Y = −2

⎛
⎜⎝

h2 − h1 k2 − k1
...

...
hN − h1 kN − k1

⎞
⎟⎠

T

(5)
and ΔD = (δmn)(M−1)×(N−1), where

δmn = d2m+1,n+1 − d2m+1,1 − d21,n+1 + d211. (6)

Equation (4) implies thatΔD = XTY and also rank(ΔD) �
2. This property is called the low-rank property of the TOA-
distance matrix D.

3. DERIVATION OF CLOSED-FORM SOLUTIONS

3.1. Recovery of TOA-distance matrix

In this subsection, we study the problem of recovering the
TOA-distance matrix, which is stated as follows: given a
TDOA-distance matrix Γ = (τmn)M×(N−1), determine a
matrix D = (dmn)M×N such that τmn = dm,n+1 − dm,1 for
all m,n, where D is a TOA-distance matrix.

Let us denote dm1 by zm−1 as a unknown variable. The
recovery of the TOA-distance matrix is understood as deter-
mining M nonnegative variables z0, . . . , zM−1 such that

D =

⎛
⎜⎜⎜⎝

z0 z0 + τ11 · · · z0 + τ1,N−1

z1 z1 + τ21 · · · z1 + τ2,N−1

...
...

. . .
...

zM−1 zM−1 + τM1 · · · zM−1 + τM,N−1

⎞
⎟⎟⎟⎠ (7)

is a TOA-distance matrix. Let amn = 2τm+1,n, bn = −2τ1n,
and cmn = τ2m+1,n − τ21n. Then (6) and (7) imply that

δmn = amnzm + bnz0 + cmn. (8)

IfD is a TOA-distance matrix, the low rank property con-
firms that for all 1 � m1 < m2 < m3 � M − 1 and
1 � n1 < n2 < n3 � N − 1,

det

⎛
⎝δm1n1 δm1n2 δm1n3

δm2n1 δm2n2 δm2n3

δm3n1
δm3n2

δm3n3

⎞
⎠ = 0. (9)

(8) and (9) give us a polynomial equation in four variables
z0, zm1

, zm2
, zm3

expressed by the following linear equation:

Cm1m2m3
(n1, n2, n3)T

T
m1m2m3

= 0, (10)

where Tm1m2m3
and Cm1m2m3

(n1, n2, n3) are given in Ta-
ble 1. Note that Cm1m2m3

(n1, n2, n3) is known from Γ, and
thatTm1m2m3 contains four unknown variables z0, zm1 , zm2 ,
zm3 .

Let F be a system of all the polynomial equations given
in (9) for all m1,m2,m3, n1, n2, n3. The number of mono-
mials in F is K=

(
M
3

)
+
(
M
2

)
+M+1 and they are given by

TF = (z0z1z2, z0z1z3, . . . , zM−3zM−2zM−1,

z0z1, z0z2, . . . , zM−2zM−1, z0, z1, . . . , zM−1, 1).

F has
(
M−1

3

)(
N−1
3

)
polynomial equations. On the basis of

the formulae for Tm1m2m3
, Cm1m2m3

(n1, n2, n3), and TF ,
we generate a coefficient matrix CF of F as follows:

1. CF ← [ ]; K ←∑3
k=0

(
M
k

)
;

2. For each m1,m2,m3, n1, n2, n3

3. Cm1m2m3(n1, n2, n3)← Table 1; A← zeros(1,K);

4. A([I1, k1 + I2, k2 + I3,K])← Cm1m2m3(n1, n2, n3);

5. CF ← [CF ; A]

6. end.
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Table 1. Formulae for Tm1m2m3
and Cm1m2m3

(n1, n2, n3).

Tm1m2m3 =
(
z0zm1zm2 , z0zm1zm3 , z0zm2zm3 , zm1zm2zm3 , z0zm1 , z0zm2 , z0zm3 , zm1zm2 , zm1zm3 , zm2zm3 , z0, zm1 , zm2 , zm3 , 1

)
Cm1m2m3 (n1, n2, n3) = A123 +A312 +A231 −A321 −A213 −A132

where Ai1i2i3 = (â1â2b̂3 , â1b̂2â3 , b̂1â2â3 , â1â2â3 , â1b̂2ĉ3 + â1ĉ2b̂3 , b̂1â2ĉ3 + ĉ1â2b̂3 , b̂1ĉ2â3 + ĉ1b̂2â3 , â1â2ĉ3 , â1ĉ2â3 ,

ĉ1â2â3 , b̂1ĉ2ĉ3 + ĉ1b̂2ĉ3 + ĉ1ĉ2b̂3 , â1ĉ2ĉ3 , ĉ1â2ĉ3 , ĉ1ĉ2â3 , ĉ1ĉ2ĉ3)

and âk = amknik
, b̂k = bnik

, ĉk = cmknik
.

Here,
I1 = (p0m1m2

, p0m1m3
, p0m1m3

, pm1m2m3
),

I2 = (p0m1
, p0m2

, p0m3
, pm1m2

, pm1m3
, pm2m3

),

I3 = (1,m1+1,m2+1,m3+1), k1 =
(
M
3

)
, k2 = k1+

(
M
2

)
,

pm1m2 = m1M − 1
2
(m1 + 2)(m1 + 1) +m2 + 1,

pm1m2m3 = 1
2
m1M

2 − 1
2
[(m1 + 2)2 − 2(m2 + 1)]M

+ 1
6
(m3

1 + 6m2
1 + 11m1 − 3m2

2 − 9m2 + 6m3 + 6).

Note that pm1m2m3
and pm1m2

+ k1 are the orders of the
monomials zm1

zm2
zm3

and zm1
zm2

in TF , respectively.
Equation (10) implies that

CFTT
F = 0. (11)

Since TF contains all variables z0, . . . , zM−1, the TOA-
distance matrix is recovered if the linear equations (11) are
solved. The solvability of (11) depends on the rank of CF ,
which is given by the following proposition.

Proposition 1. Considering the cases (M � 4, N � 7),

(M � 5, N � 6), and (M � 7, N � 5), if the points

{(um, vm)}Mm=1 do not lie on the same line, and a simi-

lar condition applies for {(hn, kn)}Nn=1, we certainly have

rank(CF ) =
3∑

k=0

(
M

k

)
= K − 1. (12)

A mathematical proof of this proposition has not yet been
found. However, we checked the rank of CF in many simu-
lated experiments and confirmed that it is correct. From (11),
it is obvious that [

CT
FCF

]
TT
F = 0. (13)

Let Emin be the eigenvector corresponding to the smallest
eigenvalue of the matrix CT

FCF and Emin,i be the ith ele-
ment of Emin. The closed-form solutions for z0, . . . , zM−1

are given by the following proposition.

Proposition 2. If rank(CF ) = K − 1, (11) has a unique

solution given by, for m = 0, 1, . . . ,M − 1,

zm =
Emin,K−M+m

Emin,K
. (14)

Proof. The size of CT
FCF is K × K and rank(CT

FCF ) =
rank(CF ). Thus, if rank(CF ) = K − 1, Emin is a
unique eigenvector corresponding to the zero eigenvalue.

The uniqueness of the zero eigenvalue of CT
FCF and (13)

imply that TF and Emin are linearly independent. Hence
(14) is satisfied.

3.2. TOA-based localization in 2D

We assume that a candidate D = (dmn)M×N of the TOA-
distance matrix is determined on the basis of the TDOA-
distance matrixΓ, the closed-form solutions for z0, . . . , zM−1

given in Proposition 2, and (7). In this section, we consider
TOA-based localization in 2D, which is stated as follows:
find {(um, vm)}Mm=1 and {(hn, kn)}Nn=1 in R

2 such that√
(um − hn)2 + (vm − kn)2 = dmn ∀ m,n. (15)

Without loss of generality, since the roles of the points
{(um, vm)}Mm=1 and {(hn, kn)}Nn=1 are symmetric in TOA-
based localization, we assume that N � M . Moreover,
since the TOA-distance matrix is invariant under reflection,
translation, and rotation, we assume that (u1, v1) ≡ (0, 0),
(u2, v2) ≡ (0, α), (α > 0), and h1 � 0. From (15), we first
have formulae for kn based on α as follows:{

d21n = h2
n + k2

n

d22n = h2
n + (kn − α)2

⇒ kn =
1

2α

(
d21n + α2 − d22n

)
. (16)

Furthermore, let a matrix ΔD be given by (6). Since
rank(ΔD) � 2, by factorizing ΔD, there exist two matrices
X̂ ∈ R

2×(M−1) and Ŷ ∈ R
2×(N−1) such that ΔD = X̂T Ŷ.

Let X and Y be given by (5). Since XTY = ΔD = X̂T Ŷ,
X̂ and Ŷ are used to determine X and Y, in the sense that
there exists an invertible (2× 2) matrix

(
l1 l2
l3 l4

)
such that

X =

(
l1 l2
l3 l4

)−T

X̂ and Y =

(
l1 l2
l3 l4

)
Ŷ. (17)

Combining (5) and (17) with h2
n = d21n−k2n and (16), we have

4(h2
n − h2

1) =

⎛
⎜⎜⎜⎜⎝

ŷ21,n−1

ŷ22,n−1

2ŷ1,n−1ŷ2,n−1

−4ŷ1,n−1

−4ŷ2,n−1

⎞
⎟⎟⎟⎟⎠

T

×

⎛
⎜⎜⎜⎜⎝

l21
l22
l1l2
h1l1
h1l2

⎞
⎟⎟⎟⎟⎠ (18)

= 2(d21n + d22n− d211− d221)+
1

α2

[
(d221− d211)

2− (d22n− d21n)
2],

where ŷij denotes the (i, j)th element of Ŷ. Let d1 and d2

be 1 × (N − 1) vectors whose elements are 2(d21n + d22n −
d211−d221) and (d221−d211)

2−(d22n−d21n)
2 for n = 2, . . . , N ,
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respectively, and let

S =

⎛
⎜⎜⎜⎝

ŷ2
11 · · · ŷ2

1,N−1

ŷ2
21 · · · ŷ2

2,N−1

2ŷ11ŷ21 · · · 2ŷ1,N−1ŷ2,N−1

−4ŷ11 · · · −4ŷv1,N−1

−4ŷ21 · · · −4ŷ2,N−1

⎞
⎟⎟⎟⎠ ,L =

⎛
⎜⎜⎜⎝

l21
l22
l1l2
h1l1
h1l2

⎞
⎟⎟⎟⎠
T

. (19)

Equation (18) implies that

STL = d1 +
1

α2
d2. (20)

Because of limited space in this paper, we give the fol-
lowing result without proof: if N � 6, rank(ST ) = 5
almost surely. Note that the value of N in this subsection is
max{M,N}, where M,N are given in the section on TDOA-
based localization. Thus, M and N given in Proposition 1
that we study in this paper satisfy max{M,N} � 6, and
then we almost surely have rank(S) = 5. Let S† denote the
Moore-Penrose pseudoinverse of ST , i.e., S†ST = I5, and let
a = S†d1, b = S†d2. Equation (20) implies that

l21 = a1 +
1

α2
b1 , l22 = a2 +

1

α2
b2 , l1l2 = a3 +

1

α2
b3

h1l1 = a4 +
1

α2
b4 , h1l2 = a5 +

1

α2
b5,

(21)

where ai, bi denote the ith elements of a and b, respectively.
From the first three equations of (21), the closed-form solu-
tion for α is given by the following quadratic equation:

c1 + c2
1

α2
+ c3

1

α4
= 0, (22)

where c1 = a1a2 − a23, c2 = a1b2 + a2b1 − 2a3b3, and
c3 = b1b2 − b23. For each candidate α from (22), the closed-
form solutions for kn are given by (16), and the closed-form
solutions for h1, l1, l2, l3, and l4 are given by

(l3, l4) = −2(k2 − k1, . . . , kN − k1)Ŷ
†

h1 =
∣∣∣a4 + 1

α2
b4

∣∣∣/
√

a1 +
1

α2
b1

l1 =
(
a4 +

1

α2
b4
)/

h1 and l2 =
(
a5 +

1

α2
b5
)/

h2,

(23)

where Ŷ† denotes the Moore-Penrose pseudoinverse of Ŷ.
Finally, the closed-form solutions for the remaining of un-
known parameters of TOA-based localization in 2D are given
by (17) and TOA-based localization in 2D is solved.

4. EXPERIMENTS AND CONCLUSION

4.1. Synthetic experiments

To evaluate the proposed closed-form solution for TDOA-
based localization in 2D, we perform synthetic experiments,
which are introduced as follows. Let {(um, vm)}Mm=1 and
{(hn, kn)}Nn=1 be uniformly distributed and independent
points in a virtual square of size 5 × 5 m. The TDOA-
distance matrix Γ is computed from these given positions and

the Euclidean distance. Then the TDOA-distance matrix is
corrupted by adding i.i.d. Gaussian noises to its elements,
i.e., Γσ ← Γ + N (0, σ2IM(N−1)), where IM(N−1) is the
identity matrix of size M(N − 1) and N (0, σ2IM(N−1))
denotes an (M,N − 1) Gaussian matrix with zero mean and
covariance σ2IM(N−1). The new positions {(ûm, v̂m)}Mm=1

and {(ĥn, k̂n)}Nn=1 are estimated by the proposed method and
the corrupted TDOA-distance matrix Γσ . The RMSEs of the
new positions are used to evaluate the proposed method.

4.2. Cramér-Rao lower bound

LetZ be an M(N−1) vector containing the observed TDOA-
distance matrix Γσ and let

Φ = (u1, v1, . . . , uM , vM , h1, k1, . . . , hN , kN ),

Φ̂ = (û1, v̂1, . . . , ûM , v̂M , ĥ1, k̂1, . . . , ĥN , k̂N ).

If our estimator is unbiased, i.e., E(Φ̂) = Φ, the Cramér-Rao

lower bound (CRLB) states that Cov(Φ̂) � F (Φ)−1, where
F (Φ) is the Fisher information of Φ, i.e.,

F (Φ) = EΦ

{[∇Φ ln p(Z|Φ)]2}, (24)

where p(Z|Φ) is the conditional probability density function
of Z given Φ, and ∇Φ is a partial derivative operator with
respect to Φ. Let f(Φ) be an M(N − 1) vector containing
the TDOA-distance matrix generated by Φ. We have

Zimn
=
√
(um − hn+1)2 + (vm − kn+1)2

−
√

(um − h1)2 + (vm − k1)2 + ηmn,
(25)

where Zi denotes the ith element of Z, imn = (m− 1)(N −
1) + n, and ηmn are i.i.d. Gaussian variables with zero mean
and standard deviation σ. Thus,

ln p(Z|Φ) = −M(N − 1)

2
ln(2π)− lnσ

− 1

2σ2

[
Z− f(Φ)

]T [
Z− f(Φ)

]
.

(26)

Then ∇Φ ln p(Z|Φ) = 1
σ2K

T
[
Z − f(Φ)

]
, where K is the

Jacobian matrix of f(Φ) given by

Kij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

umi
−hni+1

‖xmi
−yni+1‖2 −

umi
−h1

‖xmi
−y1‖2 if j = 2(mi − 1) + 1

hni+1−umi
‖xmi

−yni+1‖2 if j = 2(M + ni) + 1

vmi
−kni+1

‖xmi
−yni+1‖2 −

vmi
−k1

‖xmi
−y1‖2 if j = 2(mi − 1) + 2

kni+1−vmi
‖xmi

−yni+1‖2 if j = 2(M + ni) + 2

umi
−h1

‖xmi
−y1‖2 if j = 2M + 1

vmi
−k1

‖xmi
−y1‖2 if j = 2M + 2

0 otherwise,
(27)

where φj denotes the jth element of Φ, xm ≡ (um, vm),
yn ≡ (hn, kn), mi = �(i− 1)/(N − 1)	+1, ni = i− (N −
1)(mi − 1), and �a	 is the largest integer not greater than a.
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Fig. 1. Comparisons of the root-mean-square error for the proposed method with the CRLB.

Since EΦ{[Z−f(Φ)][Z−f(Φ)]T } = σ2IM(N−1), the CRLB
for TDOA-based localization in 2D is

Cov(Φ̂) � σ2[KTK]−1. (28)

4.3. Evaluation and conclusion

Figure 1 presents the means and standard deviations of RM-
SEs obtained in 200 synthetic experiments. These values
are compared with the means and standard deviations of
log10

[
1√

M+N

(∑
i CRLBii

)1/2]
. The symbol E in the figure

is used for both the RMSE and the CRLB. For comparison,
we first applied the TDOA-based localization in 3D given in
[9, 10] by adding zeros to the third coordinates. However, for
almost all values of σ, the RMSEs of these 3D experiments
were larger than 1 m (not shown in Figure 1). This means
that the 3D algorithm cannot be used directly in 2D.

On the other hand, the simulated results in Figure 1 show
that estimations by the proposed method are reliable in the
cases of small M and N , i.e., (M = 4, N = 7) and (M =
5, N = 8), and more accurate and stable in the cases of large
M and N , i.e., (M = 8, N = 10) and (M = 10, N =
14). Since the proposed method estimates source and sensor
positions from the closed-form solution, it is easy to perform
and should have a wide range of application.

5. ACKNOWLEDGEMENT

This work was supported by a Grant-in-Aid for Scientific
Research (A) (Japan Society for the Promotion of Sci-
ence (JSPS) KAKENHI Grant Number 16H01735) and the
SECOM Science and Technology Foundation.

6. REFERENCES

[1] G. Young and A.S. Householder, “Discussion of a set
of points in terms of their mutual distances,” Psychome-

trika, vol. 3, no. 1, pp. 19–22, 1938.

[2] W. S. Torgerson, “Multidimensional scaling: I. theory
and method,” Psychometrika, vol. 17, no. 4, pp. 401–
419, 1952.

[3] J.C. Gower, “Euclidean distance geometry,” Math. Sci.,
vol. 7, pp. 1–14, 1982.
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