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Abstract—In this paper, a novel algorithm is presented for
the design of sparse linear-phase FIR filters. Compared to tra-
ditional [;-optimization-based methods, the proposed algorithm
minimizes [; norm of a portion (instead of all) of nonzero
coefficients. In this way, some nonzero coefficients at crucial
positions are not affected by /; norm utilized in the objective
function. The proposed algorithm employs an iterative procedure
and the index set of these crucial coefficients is updated in
each iteration. Simulation results demonstrate that the proposed
algorithm can achieve better design results than both greedy
methods and traditional [, -optimization-based methods.

Index Terms—FIR filters, iterative /; optimization, [, norm,
linear program, sparsity.

I. INTRODUCTION

Finite impulse response (FIR) filters are widely employed
in various applications of signal processing [1], [2]. Tradi-
tional design methods mainly consider how to improve the
approximation performance of an FIR filter given design
specifications and many design problems can be formulated
equivalently as convex optimization problems [3]. However,
the implementation complexity of an FIR filter is seldom taken
into account by traditional design methods.

Lately, sparse FIR filter designs draw much attention. A
sparse FIR filter contains a number of zero coefficients (i.e.,
impulse responses). Arithmetic operations or circuit compo-
nents corresponding to these coefficients then can be ignored,
leading to a lower hardware cost and lower power consump-
tion. Generally, the sparsity of an FIR filter can be evaluated by
lp (quasi-)norm of filter coefficients. However, [y (quasi-)norm
results in a combinatorial optimization problem. Optimal de-
signs of sparse FIR filters could be obtained by traditional
combinatorial optimization techniques [4], [5], [6]. However,
their computational complexity is too high for large-scale
design problems or applications where specifications need to
be updated to accommodate the change of environments.

Using [y norm, some design problems of sparse FIR filters
can be viewed as a special class of sparse coding problems.
With the advances of sparse representation and compressive
sensing [7], [8], optimization techniques originally developed
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for sparse coding are adopted in many algorithms to solve
sparse FIR filter design problems. For instance, orthogonal
matching pursuit (OMP) is utilized by [9]. However, because
of essential difference between sparse coding and sparse FIR
filter design, it is generally hard to obtain satisfying results
by directly applying sparse coding techniques in sparse FIR
filter design. Thus, more complicated searching strategies are
required. Two heuristic algorithms are proposed in [10]. The
first one, called the successive thinning algorithm, is based
on two zero-coefficient selection rules, that is, the minimum-
increase and the smallest-coefficient. In each iteration, one
index is incorporated in the index set of zero coefficients
until some approximation error constraints are violated. A
regularized objective function, composed by /; norm of filter
coefficients and the minimax or weighted least-squares (WLS)
approximation error, is minimized in [11]. A real sparse design
is obtained by hard thresholding after solving the regularized
problem. The iterative [; optimization is proposed in [12].
Compared to traditional [y optimization, a weighting function
updated in each iteration is introduced in [12] and larger
weights are assigned to coefficients with smaller magnitudes.
In [13], the iterative shrinkage/thresholding (IST) techniques
are applied to tackle sparse FIR filter design problems. But dif-
ferent to the traditional IST, simpler subproblems constructed
in each iteration are solved via their dual problems. It is
proven that, under a sufficient condition, optimal solutions
to the original subproblems can be obtained by solutions to
dual problems. Using the similar design strategy, an efficient
design algorithm is also developed in [14] for the design
of sparse FIR filters subject to WLS approximation errors.
Considering the fact that, given a filter order, minimizing the
number of nonzero coefficients generally yields a sparse FIR
filter of lower order, an iterative design algorithm is presented
in [15], where both filter order and sparsity of an FIR filter
are jointly optimized. The iterative-reweighted-least-squares
(IRLS) algorithm is utilized to solve this joint optimization
problem.

The remainder of the paper is organized as follows. In
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Section II, the proposed algorithm is developed. Simulation
results are presented in Section III. Finally, we conclude the
paper in Section IV.

II. PROPOSED ALGORITHM

For clarity of presentation, we only consider in this paper
the design of sparse linear-phase FIR filters of type I with even
order (odd length) and even symmetry. But design problems
of sparse FIR filters of other types can also be tackled by the
proposed algorithm with appropriate modifications. Let IV rep-
resent the filter order of an FIR filter and x = [zgz7 ... x%]T
be filter coefficients to be optimized. Based on the symmetric
structure of an FIR filter of type I, filter coefficients can
be recovered by h, = hy_, = z, for n = 0,...,N/2.
To achieve the sparsest filter under given specifications, we
formally cast the design problem as

(1a)
(1b)

[1%lo

s.t. ‘CT(w)X—D(w)‘Sé(w), Yw € Qr

min
X

where [y (quasi-)norm counts the number of nonzero coeffi-
cients, c(w) is defined by c(w) = [2cos Jw ... 2cosw 1] T,
D(w) and 6(w) denote, respectively, the ideal magnitude
response and the specified upper bound of magnitude approx-
imation error. If a sparsity pattern of x is known, a potential
solution to (1) can be attained by solving the following linear

program

min s (2a)
st |eT(w)x—Dw)| < é(w)+s, YweQr (2b)
z,=0,VneZ (2¢)

where Z is a set of indices corresponding to zero elements of
x. If the optimal solution to (2) is nonpositive, this sparsity
pattern is feasible to (1).

As [; norm is a convex function closest to [y norm, a
classical technique to solve (1) is to replace [x||, by its
ly counterpart. However, the sparsity level of the optimal
solution to (1) is highly affected by constraints (1b). If the
given specifications are stringent, using [; norm generally
cannot lead to optimal or even sparse solutions. Some other
design methods choose indices of zero coefficients by heuristic
criteria, such as, the minimum increase of approximation error
in each iterative step [10]. However, there is no guarantee that
adopting them could definitely lead to the optimal designs.

It is worth noting that classical [;-optimization-based de-
sign methods aforementioned essentially assume that all the
nonzero coefficients could be nullified and, thereby, their
magnitudes need to be punished by their /; norm in the
objective function. This design strategy works well when the
sparsity of the optimal solution to (1) is extremely sparse.
But if the given specifications are stringent, design results
obtained by classical [; optimization could be far away from
the optimal ones, since nonzero coefficients (especially those
with large magnitudes) could be punished excessively by their
Iy norm. Furthermore, to satisfy the constraints imposed on

TABLE I
MAJOR STEPS OF THE PROPOSED ALGORITHM

Input:  Filter order N, desired magnitude response D(w), and

upper bound §(w) of magnitude approximation error

Output:  Filter coefficients x

Step 1:  Set ¢ = 0 and initialize Z©) and A Then, solve 2)
with Z(9 to obtain x(9).

Step 2:  Update Z(!) and N'(®) according to (4) and (5).

Step 3:  Set t =t + 1. Then, construct T and solve 3) to
obtain x(®).

Step 4:

If the conver§ence condition is satisfied, solve (2) using
the final Z(*) and return the obtained design result;
Otherwise, go to Step 2.

magnitude approximation errors, filter coefficients at some
crucial positions have to be nonzero and their magnitudes
could be very large. In view of these points, it is actually
unnecessary to incorporate all the nonzero coefficients in [y
norm adopted by the objective function. In practice, however,
it is difficult to identify the indices of these crucial coefficients.
To overcome this difficulty, a novel greedy strategy based on
the I; optimization is developed as follows. Let Z(*~1) denote
the index set of zero coefficients obtained in the previous
iteration and A/*~1) be the complement of Z(*~1). They are
initialized by Z(®) = @ and N(®) = {0,1,---, M}. Then, in
each iteration, the following design problem is solved

min lperol e
s.t. ‘CT((A})X - D(w)‘ <do(w), Ywer (3b)
z, =0, Vne 2t (3¢)

where X7 = [@j,, %)y, ,x;)7 is a sub-vector of x and
T = {4, e N~V n=1,-.. T}. Generally, the number
of elements of x) should be less than L/\/'(tl) CLet x®
be the solution achieved by solving (3). If there exist zeros in
x®, both Z(=1) and N*~1) are updated by

z® :Z(tfl)U{n\mg) ZO,TLEN(tfl)}, “4)

N® = §t=D {n|x,(f) =0,n¢€ N(t_l)} . (5)

It can be observed that, although all the nonzero coefficients
{Zn}nepe—1 are optimized in (3), only a portion of nonzero
coefficients {z,},c7 take part in the construction of the
objective function, while filter coefficients {z,, },,c arct-1) 7
are optimized to ensure that magnitude approximation error
constraints (3b) are satisfied.

Table I summaries the major steps of the proposed algo-
rithm. Two comments regarding the proposed algorithm are
given below.

1) Indices in 7®*) has to be appropriately selected in each
iteration, as they highly affect design results obtained
in the subsequent iterations. Inspired by {; norm, 7
consists of the indices of filter coefficients with the T’
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TABLE II
SPECIFICATIONS OF EXAMPLE 1
Passband region 0, 0.37]
Stopband region 0.57, 7]
Filter order N 60, 70, and 80

Passband magnitude
Stopband magnitude

Within £0.001 dB of unity
Below —60, —65, —70, —75, and —80 dB

smallest magnitudes in our proposed algorithm. This
selection rule implies that

J1

(6)
To determine 7(), the design problem (2) with Z(0) =
@ has to be solved.
2) The proposed algorithm terminates the iterative proce-

dure when Hx(t) B x(t_l)Hz
e, v

where ||-||,, represents I norm of a vector and ¢ is a pre-
scribed threshold. In general, if the sparsity level of filter
coefficients no longer increases, the iterative procedure
would converge in several iterations, as the index set
T does not vary with ¢. After the convergence of the
iterative procedure, the equiripple design can be further
obtained by tackling (2) using the final Z(®).

III. SIMULATIONS

In this section, two design examples are presented to
demonstrate the effectiveness of the proposed algorithm. In
our designs, parameter ¢ is chosen as 1075, Constraints (2b)
and (3b) are imposed on 501 discrete frequency points within
[0, 7]. Both (2) and (3) are linear programs, which are solved
by SeDuMi [16].

In the first example, a set of lowpass filters are designed
using specifications given in Table II. In all the designs of this
example, parameter 7" is always chosen equal to 2. Numbers of
zero coefficients for each pair of specific filter order N and the
minimum stopband magnitude attenuation are summarized in
Table III. To evaluate its performance, the proposed algorithm
is compared to the successive thinning algorithm [10] in
which two zero-coefficient selection rules are suggested, that
is, the smallest-coefficient and the minimum-increase. It can
be observed that the proposed algorithm can obtain FIR
filters with more zero coefficients in most designs. Magnitude
responses of FIR filters obtained by three design methods
are presented in Fig. 1, where filter order and the minimum
stopband magnitude attenuation are chosen, respectively, equal
to 60 and —70 dB. Impulse responses of each FIR filter are
depicted in Fig. 2. Due to their symmetric structure, only half
of impulse responses are shown in Fig. 2. Note that, most
of zero coefficients are located towards both ends of impulse
responses of a linear-phase FIR filter. Thus, the resulting filters
could be considered as lower-order filters.

In the second example, we employ the proposed algorithm
to design bandpass filters using various N and 6(w). The

’x(.t—l) <. < ’zgtT—l)‘ < ‘Iz(:_l)’ ke NED_T®),

— Proposed
0 —— minimum-increase

— smallest-coefficient

Magpnitude response in dB
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Fig. 1. Magnitude responses of FIR filters obtained in Example 1.
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Fig. 2. Impulse responses of FIR filters obtained in Example 1.

detailed specifications are given in Table IV. In this example,
we set T equal to 6. The proposed algorithm is compared to
the iterative reweighted [; (IRL1) design algorithm [12], which
iteratively solves the following problem

min v+ u ’VV(l)xH1 (8a)

x,y

st. |[vi(w)x—Dw)|<v, YweQ,  (8b)
v <6, (8c)
2, =0, ViezW (8d)

where 4 is a regularization parameter always set equal to
1, WO is a diagonal matrix whose diagonal elements are

-1
updated in each iteration by Wi(l) = xglfl) + a} , and

o takes a small value to avoid the division by zero. Problem
formulation (8) shows that the IRL1 algorithm also works with
the [y optimization. But it aims to minimize the weighted
Iy norm of all the nonzero coefficients. Design results of
both algorithms are summarized in Table V, which shows
that the proposed algorithm achieves much better results when
only considering in each iteration the sparsity of a portion of
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TABLE III
NUMBER OF ZERO COEFFICIENTS OF SPARSE FIR FILTERS OBTAINED IN EXAMPLE 1

Stopband magnitude Proposed Minimum-increase [10] Smallest-coefficient [10]
level (dB) N=60 N=T70 N=80 N=60 N=T70 N=80 N=60 N=70 N=80
—60 24 34 44 22 32 42 22 32 42
—65 22 32 42 18 28 38 16 26 36
—70 22 32 42 18 28 38 16 20 30
—75 20 30 40 16 26 36 16 26 36
—80 20 30 40 20 30 40 20 30 40
TABLE 1V magnitudes could drive design results away from the optimal

SPECIFICATIONS OF EXAMPLE 2

Maximum filter order N
Passband region
Stopband region

Upper bound §(w) of

160, 180, 200, 220 and 240
0.37,0.47]

0,0.257] U [0.57, ]

Below —60, —70, —80, —90 and

magnitude approximation error —100 dB
TABLE V
NUMBER OF ZERO COEFFICIENTS OF SPARSE FIR FILTERS OBTAINED IN
EXAMPLE 2
N 160 180 200 220 240
O(w) —60dB | —70dB | —80dB | —90dB | —100 dB
Proposed 48 40 30 28 20
IRL1 [12] 42 32 20 16 12

nonzero coefficients. Impulse responses of FIR filters obtained
using N = 160 and d(w) = —60 dB are given in Fig. 3. As
already observed in Example 1, sparse FIR filters generally
have lower filter orders.

IV. CONCLUSIONS

In this paper, we develop a novel algorithm for the design
of sparse linear-phase FIR filters based on the iterative [y
optimization. Different to classical /; optimization techniques,
the proposed algorithm aims to minimize in each iteration [y
norm of a portion of nonzero coefficients. This design strategy
is inspired by the fact that some nonzero coefficients located
at crucial positions cannot be nullified and minimizing their

—=o Proposed ?
—o |RL1

Impulse response

40 50 60 70 80
index n

0.1 i i i
0 50 10 20 30

Fig. 3. Impulse responses of FIR filters obtained in Example 2.

solutions. In practice, a small number of filter coefficients with
the smallest magnitudes are considered as ones that tend to
be zeros. Simulation results demonstrate that the proposed
algorithm can achieve better designs than both classical /;-
optimization-based algorithms and greedy algorithms using
more complicated zero-coefficient selection rules.
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