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Abstract—In this paper, we propose signal detection schemes
for massive overloaded multiple-input multiple-output (MIMO)
systems, where the number of receive antennas is less than that
of transmitted streams. Using the idea of the sum-of-absolute-
value (SOAV) optimization, we formulate the signal detection as
a convex optimization problem, which can be solved via a fast
algorithm based on Douglas-Rachford splitting. To improve the
performance, we also propose an iterative approach to solve the
optimization problem with weighting parameters update in a
cost function. Simulation results show that the proposed scheme
can achieve much better bit error rate (BER) performance than
conventional schemes, especially in large-scale overloaded MIMO
systems.

Index Terms—massive MIMO, overloaded MIMO, proximal
splitting methods, Douglas-Rachford algorithm, SOAV optimiza-
tion

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,
where tens or hundreds of antennas are equipped in each
transmitter and receiver, are gathering attention as a method
to achieve very high spectral efficiency [1], [2]. In massive
MIMO systems, low complexity signal detection method is
essential because the required computational complexity of
MIMO signal detection generally increases along with the
increase of the antennas. Some of the candidates for massive
MIMO systems are linear signal detections, such as the zero
forcing (ZF) and the minimum mean square error (MMSE)
detection methods. Besides them, some non-linear detection
schemes have also been proposed. The likelihood ascent search
(LAS) [3], [4] and the reactive tabu search (RTS) [5], [6]
employ local neighborhood search of likelihood and achieve
much better performance than linear detection. The graph-
based iterative Gaussian detector (GIGD) [7] is well known
as a low complexity scheme built upon belief propagation
techniques.

In MIMO systems, a sufficient number of receive antennas
may not be available because of the limits on the size,
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weight, cost and/or power consumption of the receiver. Such
MIMO systems, where the number of receive antennas are
less than that of transmitted streams, are known as overloaded
(or underdetermined) MIMO systems. The slab-sphere decod-
ing [8] is a signal detection algorithm based on maximum
likelihood (ML) for overloaded MIMO systems to find the
solution with lower complexity than that of exhaustive search.
Some techniques, such as the pre-voting cancellation [9] and
the virtual channel [10], transform overloaded systems into
non-overloaded systems to apply conventional MIMO signal
detection. [11] and [12] employ the ideas in [8] and [9] to
achieve a good performance with lower complexity. For mas-
sive overloaded MIMO systems, however, these schemes are
not practical because their complexity is still high, while the
performance of low-complexity detection for massive MIMO
systems is considerably degraded in the overloaded scenario.
To further reduce the complexity, the enhanced reactive tabu
search (ERTS), which is an extension of the random restart re-
active tabu search (RTS) [6], has been recently proposed [13].
ERTS employs RTS iteratively while varying the initial point
of the search randomly until the estimate by RTS satisfies a
certain condition. In [13], it is shown that ERTS can achieve
a comparable performance to the optimal ML detection with
affordable computational complexity for overloaded MIMO
systems with tens of antennas. With hundreds of antennas,
however, ERTS requires prohibitive computational complexity
to achieve such performance because the required number of
RTSs increases with the number of antennas.

In this paper, we propose a massive overloaded MIMO
signal detection scheme with much lower complexity than that
of conventional schemes [8]–[12]. We formulate the signal
detection problem as a convex optimization problem, where
the idea is based on the sum-of-absolute-value (SOAV) opti-
mization [14], which is a technique to reconstruct a discrete-
valued vector from its linear measurements. The optimization
problem can be efficiently solved with proximal splitting
methods [15] even for underdetermined systems. To improve
the performance, we extend SOAV optimization to weighted-
SOAV optimization, where the prior information about the
discrete-valued vector can be used, and propose an iterative
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approach, named iterative weighted-SOAV (IW-SOAV), using
the estimate in the previous iteration as the prior information.
Since the weighted-SOAV optimization problem can also
be efficiently solved with proximal splitting methods, IW-
SOAV can detect the transmitted signals with low computa-
tional complexity. Simulation results show that IW-SOAV can
achieve much better bit error rate (BER) performance than
conventional signal detection schemes especially in large-scale
overloaded MIMO systems.

In the rest of the paper, we use the following notations.
Superscript (·)T and (·)H denote the transpose and the Hermi-
tian transpose, respectively. Mathematica symbols, j, I , 1, and
0 represent the imaginary unit, the identity matrix, a vector
whose elements are all 1, and a vector whose elements are all
0. For a vector a = [a1 · · · aN ]T ∈ RN , we define the ℓ1 and
ℓ2 norms of a as

∥a∥1 =
N∑

i=1

|ai| and ∥a∥2 =

√√√√
N∑

i=1

a2i , (1)

respectively. Pr(A) denotes the probability of an event A and
E[·] stands for the expectation operator.

II. SYSTEM MODEL

Here we consider a MIMO system with n transmit antennas
and m receive antennas. For simplicity, precoding is not con-
sidered and the number of transmitted streams is assumed to be
equal to that of transmit antennas. In addition, we employ the
quadrature phase shift keying (QPSK) and define the alphabet
of the transmitted symbol as S̃ = {1+j,−1+j,−1− j, 1− j}.
The transmitted signal vector s̃ = [s̃1 · · · s̃n]T ∈ S̃n is
composed of signals transmitted from n transmit antennas,
where s̃j (j = 1, . . . , n) denotes the symbol sent from the jth
transmit antenna, E[s̃] = 0, and E[s̃s̃H] = 2I . The received
signal vector ỹ = [ỹ1 · · · ỹm] ∈ Cm, where ỹi (i = 1, . . . ,m)
denotes the signal received at the ith receive antenna, is given
by

ỹ = H̃s̃+ ṽ, (2)

where

H̃ =

⎡

⎢⎣
h̃1,1 · · · h̃1,n

...
. . .

...
h̃m,1 · · · h̃m,n

⎤

⎥⎦ ∈ Cm×n (3)

is a flat fading channel matrix and h̃i,j represents the channel
gain from the jth transmit antenna to the ith receive antenna.
ṽ ∈ Cm is the additive white complex Gaussian noise vector
with zero mean and covariance matrix of σ2

vI . The signal
model (2) can be rewritten as

y = Hs+ v, (4)

where

y =

[
Re{ỹ}
Im{ỹ}

]
, H =

[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
,

s =

[
Re{s̃}
Im{s̃}

]
, v =

[
Re{ṽ}
Im{ṽ}

]
. (5)

Since s̃ ∈ {1+ j,−1+ j,−1− j, 1− j}n, s is a binary vector
whose elements are 1 or −1.

III. PROPOSED SIGNAL DETECTION SCHEMES

In this section, we propose signal detection schemes based
on SOAV optimization for massive overloaded MIMO sys-
tems. We briefly review SOAV optimization in Sect. III-A
and propose a signal detection scheme in Sect. III-B. In
Sect. III-C, we also propose an iterative approach to improve
the performance.

A. SOAV Optimization

SOAV optimization [14] is a technique to reconstruct an
unknown discrete-valued vector as x = [x1 · · · xN ]T ∈
{c1, . . . , cP }N ⊂ RN from its linear measurements η =
Ax, where A ∈ RM×N . If we assume Pr(xi = cp) =
1/P (p = 1, . . . , P ) for all xi (i = 1, . . . , N), each of
x− c11, . . . ,x− cP1 has approximately N/P zero elements.
Based on this property and the idea of ℓ1 optimization in
compressed sensing [16], SOAV optimization solves

minimize
x∈RN

1

P

P∑

p=1

∥x− cp1∥1

subject to η = Ax (6)

to reconstruct x from η.

B. Proposed Signal Detection via SOAV Optimization

In MIMO systems, the transmitted signal vector s is
commonly discrete and the received signal vector y can be
regarded as its linear observations if the noise can be ignored.
Since each element of s is 1 or −1 for the case with QPSK,
we can formulate the signal detection problem as SOAV
optimization, i.e.,

minimize
z∈R2n

1

2
∥z − 1∥1 +

1

2
∥z + 1∥1

subject to y = Hz. (7)

Since the received signal vector y contains the additive noise
as in (4), we modify the optimization problem as follows:

minimize
z∈R2n

1

2
∥z − 1∥1+

1

2
∥z + 1∥1

+
α

2
∥y −Hz∥22 (8)

by using the idea of ℓ1-ℓ2 optimization. Here, α > 0 is a
given constant. The solution of (8) can be obtained with the
following theorem [15].
Theorem 1. Let φ1,φ2 : R2n → (−∞,∞] be lower semicon-
tinuous convex functions and (ri dom φ1)∩(ri dom φ2) ̸= ∅.
In addition, φ1(z) + φ2(z) → ∞ as ∥z∥2 → ∞ is assumed.
A sequence zk (k = 0, 1, . . .) converging to the solution of

minimize
z∈R2n

φ1(z) + φ2(z) (9)
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j for IW-SOAV

can be obtained by using the following Douglas-Rachford
algorithm. Here, the proximity operator of a function φ :
R2n → R is defined as

proxφ(z) = arg min
u∈R2n

φ(u) +
1

2
∥z − u∥22. (10)

Algorithm 1. (Douglas-Rachford Algorithm)

1) Fix ε ∈ (0, 1), γ > 0, and r0 ∈ R2n.
2) For k = 0, 1, 2, . . ., iterate

⎧
⎪⎨

⎪⎩

zk = proxγφ2
(rk)

λk ∈ [ε, 2− ε]

rk+1 = rk + λk(proxγφ1
(2zk − rk)− zk).

We can rewrite (8) as

minimize
z∈R2n

f(z) + g(z), (11)

where f(z) = ∥z − 1∥1/2 + ∥z + 1∥1/2 and g(z) = α∥y −
Hz∥22/2. The proximity operators of γf(z) and γg(z) can
be obtained as

[proxγf (z)]j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1)

zj (−1 ≤ zj ≤ 1)

1 (1 ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

, (12)

and

proxγg(z) = (I + αγHTH)−1(z + αγHTy), (13)

respectively, where [proxγf (z)]j (j = 1, . . . , 2n) represents
the jth element of proxγf (z). Note that [proxγf (z)]j is a
function of zj only as shown in Fig. 1. By solving (8) with the
Douglas-Rachford algorithm, the estimate of the transmitted
signal vector s can be obtained.

C. Proposed Iterative Approach, IW-SOAV
Assuming that we have information on prior probabilities

of w+
j = Pr(sj = 1) and w−

j = Pr(sj = −1), we extend the
problem of (8) to weighted-SOAV optimization problem as

minimize
z∈R2n

2n∑

j=1

(
w+

j |zj − 1| + w−
j |zj + 1|

)

+
α

2
∥y −Hz∥22. (14)

If there is no prior information about s, i.e., w+
j = w−

j = 1/2,
the optimization problem (14) is equivalent to (8). If w+

j > w−
j

then argmin
zj

fwj (zj) = 1, where fwj (zj) = w+
j |zj − 1| +

w−
j |zj + 1|, thus the solution of zj in (14) tends to take the

value close to 1, and vice versa. The optimization problem (14)
can also be solved by using the Douglas-Rachford algorithm.
The proximity operator of

γfw(z) = γ
2n∑

j=1

(
w+

j |zj − 1|+ w−
j |zj + 1|

)
(15)

can be written as

[proxγfw(z)]j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1− djγ)

zj + djγ (−1− djγ ≤ zj < 1− djγ)

1 (1− djγ ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

(16)

as shown in Fig. 2, where dj = w+
j − w−

j . By solving the
optimization problem (14) via the Douglas-Rachford algorithm
with proxγfw and proxγg , a new estimate of the transmitted
signal vector s can be obtained.

The prior information on s is not available in a common
scenario, however, assuming iterative approach, the estimate
in the previous iteration can be used to obtain the prior
probabilities. Specifically, in the proposed iterative approach
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named IW-SOAV, we iteratively solve the weighted-SOAV
optimization problem (14) while updating the parameters w+

j

and w−
j (i = 1, . . . , 2n) as

w+
j =

⎧
⎪⎪⎨

⎪⎪⎩

0 (ŝj < −1)
1 + ŝj

2
(−1 ≤ ŝj < 1)

1 (1 ≤ ŝj)

(17)

and

w−
j = 1− w+

j =

⎧
⎪⎪⎨

⎪⎪⎩

1 (ŝj < −1)
1− ŝj

2
(−1 ≤ ŝj < 1)

0 (1 ≤ ŝj)

, (18)

where ŝj is the estimate of sj in the previous iteration. Fig.
3 shows w+

j and w−
j as a function of ŝj . w+

j is large when
ŝj is large, and w−

j is large when ŝj is small. This is because
the estimates close to 1 or −1 will be more reliable than
those close to 0. The proposed algorithm of IW-SOAV is
summarized as follows:
Algorithm 2. (Proposed Signal Detection via IW-SOAV)

1) Let ŝ = 0 and iterate a)–c) for L times.
a) Compute w+

j , w
−
j with (17),(18).

b) Fix ε ∈ (0, 1), γ > 0,K > 0, and r0 ∈ R2n.
c) For k = 0, 1, 2, . . . ,K, iterate

⎧
⎪⎨

⎪⎩

zk = proxγg(rk)

λk ∈ [ε, 2− ε]

rk+1 = rk + λk(proxγfw(2zk − rk)− zk)

and let ŝ = zK .
2) Obtain sgn(ŝ) as the final estimate of s.

IV. SIMULATION RESULTS

In this section, we evaluate the BER performance of the
proposed scheme by computer simulation comparing with
that of conventional detection methods. In the simulation, flat
Rayleigh fading channels are assumed and H̃ is composed of
independent and identically distributed complex Gaussian ran-
dom variables with zero mean and unit variance. The param-
eter α in (14) is selected as α = 10−4, 10−3, 10−2, 10−1, 1, 1,
and 1 for SNR per receive antenna of 0, 5, 10, 15, 20, 25, and
30 (dB), respectively. The other parameters of the proposed
schemes are set as K = 50, ε = 0.1, γ = 1,λk = 1.9 (k =
0, 1, . . . ,K), and r0 = 0.

Figs. 4–6 shows the BER performance for overloaded
MIMO systems with (n,m) = (25, 16), (150, 96), and
(200, 128), respectively, where the ratio m/n is fixed to be
0.64 for all cases. In the figures, MMSE, GIGD, and ERTS
represent the linear MMSE detection, the belief propagation-
based detection [7], and the massive overloaded MIMO signal
detection proposed in [13], respectively. The parameters of
ERTS are the same as those in [13], e.g., the maximum
number of RTSs is NRTS = 500 and the maximum number
of iterations in RTS is Nitr = 300. IW-SOAV denotes
our proposed scheme shown in Algorithm 2. Comparing the

SNR per receive antenna (dB)
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Fig. 4. BER performance for (n,m) = (25, 16)
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Fig. 5. BER performance for (n,m) = (150, 96)

performance of IW-SOAV with L = 1 and 10 in the figures,
where L is the number of iterations, we can see that the
BER performance is improved with the proposed iterative
approach. Although the performance of ERTS is much better
than that of IW-SOAV in Fig. 4, it considerably degrades for
larger number of antennas as shown in Fig. 5 and 6. This
is because, if the number of transmit antennas is large, RTS
often fails to find the true transmitted signal vector due to the
huge number of candidates of the transmitted vector. Although
we may get better performance with ERTS by increasing
the number of RTSs, the computational complexity could
be prohibitive to achieve comparable performance as IW-
SOAV. Specifically, given that the computational complexity
of ERTS is O(n3) + O(NRTSn2) in the worst case, and
the number of all candidates of the transmit signal vector
increases exponentially with the number of transmit antennas,
the required NRTS to keep good performance will increase
more rapidly than n. On the other hand, the computational
complexity of IW-SOAV is O(n3), which is dominated by
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Fig. 6. BER performance for (n,m) = (200, 128)
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Fig. 7. BER performance versus m for n = 150 and SNR per receive
antenna of 20 dB

the calculation of (I + αγHTH)−1 in (13). Note that the
calculation of (I + αγHTH)−1 is required only once, and
thus the corresponding computational cost does not grow
with K or L. If the ratio m/n is fixed, the computational
complexity of IW-SOAV is the same order as that of MMSE
detection O(m3) +O(mn) for an overloaded scenario. From
the figures, our proposed scheme has much better performance
than the other schemes for the large-scale overloaded MIMO
systems.

Fig. 7 shows the BER performance versus the number
of receive antennas m for n = 150 and SNR per receive
antenna of 20 dB. We can observe that IW-SOAV with
L = 10 requires less antennas than other schemes to achieve
good BER performance. For BER = 10−4, IW-SOAV can
reduce approximately 10 receive antennas compared to the
conventional ERTS.

V. CONCLUSION

In this paper, we have proposed a massive overloaded
MIMO signal detection scheme, namely IW-SOAV, which
iteratively solves the weighted-SOAV optimization problem
while updating its parameters. Simulation results show that
IW-SOAV can achieve much better performance than conven-
tional massive MIMO detection schemes, especially in large-
scale overloaded MIMO systems. Future work includes the
integration of our proposed scheme and soft channel decoding
schemes, such as low density parity check (LDPC) codes and
turbo codes.
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