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Abstract—In this paper, we propose to use a kernel sparse
representation based classifier (KSRC) for the task of speech
emotion recognition. Further, the recognition performance using
the KSRC is improved by imposing a group sparsity constraint.
The speech utterances with same emotion may have different
duration, but the frame sequence information does not play a
crucial role in this task. Hence, in this work, we propose to use
dynamic kernels which explicitly models the variability in du-
ration of speech signals. Experimental results demonstrate that,
given a suitable kernel, KSRC with group sparsity constraint
performs better as compared to the state-of-the-art support
vector machines (SVM) based classifiers.

Index Terms—Kernel sparse representations, group sparsity,
speech emotion recognition.

I. Introduction

Automatic emotion recognition from speech, is an active
research subject in the speech processing area where the
goal is to classify the input utterance into various categories
of emotion, e.g. neutral, happiness, anger, fear, disgust, and
sadness [1]–[5]. During the past decades, many classification
approaches based on the Gaussian mixture model (GMM),
the hidden Markov model, the support vector machine (SVM)
etc. have been successfully applied to speech emotion recog-
nition [6], [7].

Existing works in literature had applied sparse represen-
tation based signal processing for various signal processing
and pattern classification tasks [8]–[15]. For instance, work in
[11], [14] used SR based features for tasks in speech recog-
nition, [10] proposed a greedy dictionary for efficient speech
signal reconstruction using SR, [13] proposed to use CS with
LP based dictionary for voiced/nonvoiced detection and [12]
used SR for face recognition using sparse representation-based
classifier (SRC). In SRC, for a testing example, a sparse
vector is computed using a dictionary. Here, dictionary used
can be single, where all the training examples of all the
classes are used as basis, or class specific, where individual
dictionaries consisting of training examples of individual class,
are used [12]. In case of a single dictionary, the weights (in
the sparse vector) corresponding to the true class have high
amplitude as compared to weights corresponding to rest of
the classes which is used to find the identity of test example.
In case of multiple dictionaries, the test example is classified
to the class giving minimum reconstruction error. Although
SRC performed better than some of the existing pattern clas-
sification methods, its classification ability degrades with data
having the same directional distribution [16], [17]. This means

the efficiency of SRC decreases if vector direction of a test
sample is same as that of training samples belonging to two or
more classes. To address this problem, kernel based methods
are proposed, where a nonlinear mapping is used to map
input data space to a high dimensional kernel feature space.
Kernel trick allows the use of linear classification methods
(in high dimensional space) to the corresponding nonlinear
data (in input space). This kernel trick is previously applied
in support vector machines (SVM) [18], [19], along with
principal component analysis, Fisher discriminant analysis and
sparse representation known as kernel principal component
analysis (KPCA) [20], kernel Fisher discriminant analysis
(KFDA) [21] and kernel sparse representation based classifier
(KSRC) [16], respectively.

In this paper, a novel speech emotion recognition method
using KSRC is proposed, where its effectiveness is studied
using various kernels. In addition, we propose to use group
sparsity constraint in KSRC, which improves the performance
by estimating more discriminative and accurate weights. This
is achieved by considering the cooperation among training
samples of same class while estimating the sparse vector. Static
kernels can’t be used for our task as speech utterances are rep-
resented as varying length sets of feature vectors [22]. Hence
dynamic kernels namely, Gaussian mixture model-based in-
termediate matching kernel (GMM-IMK) [22] and example-
specific density based matching kernel (ESDMK) [23] are
employed to address the issue of classifying varying length
sequential emotion pattern.

The organization of the paper is as follows : Section II
describes the proposed KSRC technique for speech emotion
classification. Kernels used in this work are described in
section III. Experimental results are discussed in section IV
and finally the paper is concluded in section V.

II. Kernel sparse representation based classifier

Kernel sparse representation based classifier (KSRC) is a
nonlinear extension of SRC [16]. Let us assume a k-class
classification task. Consider the training set be {ai, bi}

m
i=1,

where ai ∈ X ⊂ RN , bi ∈ 1, 2, ..., k and m is total number
of training examples. ai represents the training sample of
dimension N in input space X and bi is the corresponding
class label.

During testing, the goal is to assign label b to an arbitrary
sample a in the input space X. In KSRC, a nonlinear mapping
function Φ : RN → S is used to make nonlinearly separable
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training samples separable in higher dimensional space such
that Φ(a) = [φi(a), φ2(a), ..., φC(a)]T , where Φ(a) ∈ RC(C �
N) is transformation of a into a higher dimensional space.

Similar to SRC, KSRC also uses sparse representation of
signals, obtained using linear combination of class specific
training data (after transformation to space S) for signal
reconstruction, and then classifies the test signal to the class
giving minimum reconstruction error. This linear model can
be expressed as [16]:

Φ(a) =

m∑
i=1

Φ(ai)βi = Φβ, (1)

where β = [β1, β2, ..., βm]T is the coefficient vector correspond-
ing to Φ = [Φ(a1),Φ(a2), ...,Φ(am)] ∈ RC×m and βi are the
coefficients corresponding to Φ(ai). The problem of finding
an estimate of β is formulated as:

β̂ = argmin
β

‖β‖1 s.t. ‖Φ(a) −Φβ‖22 ≤ ε, (2)

where ε is a small error term. The computational complexity
of equation (2) is huge since the dimensionality of transformed
feature space is large than that of input space (C � N).
This issue can be addressed by using various dimensionality
reduction techniques e.g., principal component analysis (PCA)
[16], [20], [21].

One way to achieve this is to project the data from space S
to a low dimensional subspace using a transformation matrix
MC×l(l � C). Using M, equation (1) can be modified as :

MT Φ(a) = MTΦβ. (3)

Here, each column M j of M = [M1,M2, ...,Ml] is a linear
combination of all the training signals in space S, i.e.,

M = ΦΥ, (4)

where Υ = [γ1, γ2, ..., γl] and γ j = [γ j,1, γ j,2, ..., γ j,m]T is the
pseudo-transformation vector corresponding to jth transforma-
tion vector M j. However, in most of the cases the transfor-
mation Φ is not known, and the optimization of problem
in equation (3) is infeasible using traditional methods. This
issue can be addressed by using a kernel function k(., .), which
avoids the explicit mapping of training signals to space S, and
helps in solving the problem in original space. Hence using
equation (4), equation (3) can be rewritten as:

ΥT k(., a) = ΥT Kβ, (5)

where K = ΦTΦ ∈ Rm×m is the kernel Gram matrix such that
Ki, j = k(ai, a j) and k(., a) = [k(a1, a), k(a2, a), ..., k(am, a)]T =

ΦT Φ(a). Here some popular kernels e.g., linear, Gaussian
and polynomial can be employed. The pseudo-transformation
matrix Υ can be obtained using both KPCA and KFDA as de-
scribed in [16]. Thus the optimization problem in equation (2)
can be replaced by a feasible optimization problem as :

β̂ = argmin
β

‖β‖1 s.t. ‖ΥT k(., a) − ΥT Kβ‖22 ≤ ε, (6)

A. KSRC with group sparsity constraint

In KSRC, a linear combination is obtained with only a few
non zero entries of dictionary (kernel Gram matrix) atoms.
This is because the sparsity of linear coefficients is controlled
using only l1-norm regularization. In l1-norm, all the training
samples are treated equally and the cooperation of training
samples from the same class is not considered [24]. A single
sample from a group of correlated training samples is selected
during l1-norm and thus leads to misclassification when a test
example has a similar training sample in different classes [24].

However, some additional structure (in the dictionary atoms
belonging to same class) can be expected in the support
of sparse representations. In order to find this structure in
support of sparse representations, the group sparse classifier
is proposed in [24]. The group sparsity constraint employed
uses l1-norm mixed l2-norm. This regularization results in
dense representations among the coefficients belonging to the
same class but sparse representations among classes. These
group sparse representations can be obtained by modifying
the optimization problem in KSRC (equation (6)) as:

β̂ = argmin
β

λ

m∑
i=1

‖βGi
‖2 + ‖ΥT k(., a) − ΥT Kβ‖22, (7)

where λ is a constant and the kernel Gram matrix K is
partitioned into m disjoint groups (belonging to examples of
m classes) G1,G2,G3, . . . ,Gm and βGi

represents the group of
weights corresponding to the group Gi. Term λ

∑m
i=1 ‖βGi

‖2 in
equation (7) can be viewed as a combination of both l1 and
l2 norms. Weights within each group are obtained using the l2
norm, whereas the results between groups are summed using
l1 norm. Group sparsity constraint will enable us to obtain
more accurate and robust weights in each group along with
the benefits of the sparsity.

Estimate of sparse vector β can be obtained either solving
equation (6) or (7), which is then used to classify a test
example a based on minimum reconstruction error computed
as min ‖ΥT k(., a)−ΥT Kαi‖2, where for a class i a characteristic
function αi is defined such that :

αi(β j) =

β j, if b j = i
0, otherwise

(8)

Pseudo code of the proposed classification method is explained
in Algorithm 1.

III. Dynamic kernels for speech emotion recognition

The duration of the speech signal varies from one utterance
to another and hence, the number of frames also differs from
one utterance to another. In the tasks such as speaker identi-
fication, spoken language identification, and speech emotion
recognition, the duration of the data is long and preserving
sequence information is not critical. However, since the dura-
tion of the speech utterances (with different/same emotion) is
varying, thus dynamic kernels1 are used in our work. Various

1Dynamic kernels are used for sets of varying length patterns.
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Algorithm 1 KSRC algorithm for emotion speech classification.

Inputs: (i) Set of training examples {ai, bi}
m
i=1, where ai ∈ R

N ,
bi ∈ 1, 2, ..., k emotion classes.
(ii) Test example a ∈ RN .
Outputs: class label b corresponding to a.

1: Select a kernel k(., .) and compute kernel Gram matrix K and
vector k(., a).

2: Obtain the pseudo-transformation matrix Υ and normalize
columns of ΥT K and ΥT k(., a) to unit norm.

3: Solve equation (6) or (7) to obtain estimate of sparse vector β̂.
4: Compute residuals for all classes (k)

ρi(a) = ‖ΥT k(., a) − ΥT Kαi‖2 , i = 1, 2, ...k
5: Label b for test example a is obtained as :

b̂ = argmin
i=1,...,k

ρi(a)

kernels used for KSRC in this work are Gaussian mixture
model-based intermediate matching kernel (GMM-IMK) [22]
and example-specific density based matching kernel (ES-
DMK) [23]. The SVM-based classifier using ESDMK is
shown to perform better for speech emotion recognition [23].

A. GMM-IMK

GMM-IMK uses components of class-independent Gaussian
mixture model (CIGMM) as a representation for the set of
virtual feature vectors [22]. For every component of CIGMM,
a local feature vector each from the two sets of feature
vectors that has the highest probability of belonging to that
component is selected. These selected local feature vectors are
then used to compute a base kernel. The sum of all the base
kernels corresponding to different components of CIGMM is
computed to obtain the IMK. The base kernel used in GMM-
IMK is Gaussian kernel.

B. ESDMK

ESDMK is computed between the pair of examples, repre-
sented as sets of feature vectors, by matching the estimates of
the example-specific densities computed at every feature vector
in those two examples. The number of feature vectors of an
example among the K nearest neighbors of a feature vector is
considered as an estimate of the example-specific density. The
minimum of the estimates of two example specific densities,
one for each example, at a feature vector is considered as the
matching score. The ESDMK is then computed as the sum of
the matching scores computed at every feature vector in a pair
of examples [23].

IV. Experimental details and datasets used for speech
emotion recognition

In this section, effectiveness of the KSRC (with and with-
out group sparsity constraint) is studied for speech emotion
recognition task. A speech utterance is represented using a 39-
dimensional feature vector derived on a frame by frame basis.
The first 12 features of this 39 dimensional feature are the
Mel frequency cepstral coefficients [25] and the 13th feature
corresponds to the log energy. The delta and acceleration

coefficients constitutes the remaining 26 features. For a given
speech utterance the features are extracted using a frame size
of 20 ms with a 10 ms shift. We compare the performance of
proposed KSRC with the standard SVM-based classifiers, the
maximum likelihood GMM-based system, the large margin
GMM-based system and the adapted GMM-based systems.
Two databases used for studies on speech emotion recognition
are: (i) The Berlin emotional speech database (EMO-DB) [1],
[26], and (ii) The German FAU Aibo emotion corpus (FAU-
AEC) [3], [27]. The details of these datasets are given as:

1) EMO-DB: EMO-DB dataset consists of a total of 494
utterances corresponding to the following seven emotional
categories: disgust (38), sadness (53), fear (55), happiness
(64), boredom (79), neutral (78) and anger (127) (the number
of utterances for each category are given in parentheses) [1],
[26]. These speech utterances correspond to ten sentences
in German language uttered by five female and five male
speakers (actors). In this work, 80% of the utterances are
used for training and the remaining 20% are used for testing.
The speech emotion recognition accuracies presented in this
work for the EMO-DB dataset are the average classification
accuracies along with 95% confidence interval obtained for a
5-fold stratified cross-validation.

2) FAU-AEC: In the FAU-AEC dataset we have considered
four super classes of emotions: (i) anger, (ii) emphatic, (iii)
neutral, and (iv) motherese. An almost balanced subset of the
corpus defined for these four classes by CEICES of the Net-
work of Excellence HUMAINE funded by the European Union
is used in this work [3], [27]. The classification is performed at
the chunk (speech utterance) level in the Aibo chunk set. The
speaker-independent speech emotion recognition accuracies
presented in this paper for the FAU-AEC dataset is the average
classification accuracies along with 95% confidence interval
obtained for 3-fold stratified cross validation.

Classification accuracy for speech emotion recogni-
tion (SER) obtained using the proposed methods along with
its comparison to the GMM-based classifiers and SVM-based
classifiers with the state-of-the-art dynamic kernels is pre-
sented in Table I. Proposed classification results are also com-
pared with SRC [12], incomplete sparse least square regression
(ISLSR) [28] and SVM classifier using convolutional neural
networks based features (SVMCNN) [29]. For SVMCNN, re-
sults reported are the best case results where same speaker data
is used for both training and testing [29]. In this study, parame-
ters of the GMMs are estimated using the maximum likelihood
(ML) method (MLGMM), and the parameters of the UBM or
CIGMM are adapted to the data of a class (adapted GMM) [30]
are considered to build GMM-based classifiers. The accuracies
presented in Table I are the best accuracies observed among the
GMM-based classifiers and SVM-based classifiers with state-
of-the-art dynamic kernels namely GMM based intermediate
matching kernel (GMM-IMK) and example-specific density
based matching kernel (ESDMK) [22], [23]. These classifica-
tion results indicate that KSRC with group sparsity constraint
not only outperforms KSRC, but also state-of-the-art SVM
based classifiers, consistently.
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Classification
model

SER
EMO-DB FAU-AEC
CA95%CI CA95%CI

MLGMM 66.81±0.44 60.00±0.13
Adapted GMM 79.48±0.31 61.09±0.12

SRC 67.25±0.16 47.64±0.27
ISLSR 78.03±0.14 60.50±0.18

SVMCNN 93.70±0.28 64.09±0.16
SVM
using

GMM-IMK 85.62±0.29 62.48±0.07
ESDMK 92.00±0.27 65.33±0.09

KSRC
using

GMM-IMK 84.38±0.32 60.43±0.51
ESDMK 90.17±0.47 64.08±0.16

KS RCG

using
GMM-IMK 87.07±0.37 63.75±0.49

ESDMK 94.54±0.58 66.72±0.18

TABLE I: Comparison of classification accuracies (CA) (in %) of
the proposed KSRC and KSRC with group sparsity constraint (la-
beled as KS RCG) with GMM-based classifiers and SVM-based clas-
sifiers using GMM-IMK and ESDMK for speech emotion recognition
(SER). Here, CA95%CI indicates average classification accuracies
along with 95% confidence interval.

V. Conclusions

In this paper, we proposed the application of KSRC for
speech emotion recognition using dynamic kernels. Further a
group sparsity constraint is employed to improve the classifica-
tion performance of KSRC. This improvement in performance
is attributed to the efficient estimation of sparse vector as all
the examples of a group (class) are used to model the test
signal. Dynamic kernels are used to model the varying duration
of different speech utterances. Experimental results in this
work confirm that the proposed speech emotion classification
method outperforms the existing state-of-the-art SVM-based
classifiers.
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