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ABSTRACT
In perceptual audio coders, the audio signal masks the

quantization noise. The masking effectiveness depends on
the degree of tonality/noisiness of the signal. Hence, in psy-
choacoustic models (PM) of perceptual coders, the level of
the estimated masking thresholds can be adjusted by tonal-
ity estimation methods. This paper introduces three envelope
analysis methods for tonality estimation: optimized ampli-
tude modulation ratio (AM-R), auditory image correlation,
and temporal envelope rate. The methods were implemented
in a filter bank-based PM. In a subjective quality test, they
were compared to each other and to another existing method,
partial spectral flatness measure (PSFM). The PSFM and the
AM-R were rated significantly higher than the other methods.

Index Terms— Perceptual Model, Psychoacoustic Model,
Perceptual Audio Coding, Tonality Estimation

1. INTRODUCTION

Perceptual audio coders exploit the masking properties of the
auditory system to reduce the data rate of the input signal.
Commonly, the input is split into frames and decomposed
into a number of subbands, such that it is divided into time-
frequency segments. A psychoacoustic model (PM) estimates
the masking threshold (MT) evoked by the input and controls
the bit allocation for the time-frequency segments.

The effectiveness of the masking depends on the tonal-
ity/noisiness of the signal. This phenomenon is called “asym-
metry of masking.” Hellman [1] showed that a noise masks a
tone more effectively than vice versa. Hall [2] extended these
results to narrowband noise probes and maskers with irreg-
ular temporal structure and differing bandwidths. For probe
bandwidths exceeding that of the masker, the situation that is
predominantly relevant for perceptual coders, thresholds de-
creased with increasing probe bandwidth and with decreas-
ing masker bandwidth. Hall suggested the results might be
explained in terms of the temporal structure of the stimuli,
specifically the extent to which the modulation pattern of the
signal resembled that of the masker. Verhey [3] performed a
similar study and found similar results.
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Fig. 1. The psychoacoustic model [7].

In perceptual audio coders, the audio content may include
complex tones as well as noise-like sounds. Gockel et al. [4]
measured the asymmetry of masking between harmonic com-
plex tones and wideband noise. The irregular noise was a
stronger masker. These studies indicate that tone-like sounds
with no or slow envelope fluctuations and/or very regular
envelope fluctuations are less effective maskers of a noise
(with equal or greater bandwidth) than noise-like sounds with
strong, irregular and more rapid envelope fluctuations [5].

The results of recent psychoacoustic studies on distinc-
tion between noise and tone indicate that envelope analysis
methods for the tonality estimation should consider varying
temporal resolution when analyzing segments with low, mid-
dle, and high center frequencies [6]: longer analysis buffers
should be used for lower frequencies. Additionally, a recent
study showed that the masked thresholds increased with in-
creasing masker bandwidth and were lowest for medium cen-
ter frequencies [5]. This should also be taken into account in
the development of tonality estimation methods.

2. PSYCHOACOUSTIC MODEL

Taghipour et al. [7–9] introduced a PM which is shown in Fig-
ure 1. A filter bank decomposes the signal into its spec-
tral components [8–10]. The filters were designed based on
the Bark scale [11], similar to the subbands in most conven-
tional codecs. The center frequencies of neighboring filters
are spaced 1

4 Bark apart from each other. The bandpass fil-
ters, which take into account the spreading in simultaneous
masking, were designed from reversed masking curves [8,11].
For a sampling rate of 48 kHz and with a Bark-based design,
the filter bank consisted of a total of 104 complex, minimum-
phase, infinite impulse response (IIR) filters [9, 10].
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Fig. 2. Block diagram of the optimized AM-R. Only one out-
put channel of the filter bank is shown. Short-time magnitude
spectral coefficients of the squared envelope of the filter out-
put are weighted for the calculation.

Forward masking is modeled with a decaying exponen-
tial. Based on the degree of tonality of the time-frequency
segments, the estimated MTs are scaled; see Section 3. The
model can work with short or long coding blocks. First, MTs
of short segments are calculated. When long blocks are used,
the estimated MTs of short blocks are combined to generate
one MT for a long block taking into account the weighting of
quantization error by the synthesis window.

Since the spreading in simultaneous masking has already
been taken into account in the filter design, no further super-
position was necessary. The high-resolution MTs estimated
by the PM are mapped onto the spectral resolution of the
transform. The final MT is compared to the absolute threshold
of hearing. Whenever the levels of the spectral components
of the MT are below the absolute threshold, they are replaced
by the level of the absolute threshold at those spectral points.

3. TONALITY ESTIMATION METHODS

In the following, four methods are presented that estimate the
tonality/noisiness of time-frequency segments of signals.

3.1. Amplitude modulation ratio (AM-R)

Chen et al. [10] introduced a measure referred to as amplitude
modulation ratio (AM-R). The basic idea is that the envelope
of the output of a filter can indicate tonality; for details, see
[10]. The AM-R is optimized in this paper [7].

The bandwidth of a noise can be related to the degree of
fluctuations in its envelope [3, 5, 12]. Hence, envelope anal-
ysis using the amplitude modulation allows an estimation of
the effective bandwidth of the masking signal. As mentioned
earlier, in the context of the asymmetry of masking in coding,
Hall [2] suggested to analyze the temporal structure of the
input, since the threshold decreases with decreasing masker
bandwidth. The relation between the modulation frequency
and the bandwidth of a masker can be most easily explained
by the example of a complex-tone masker: the resulting mod-
ulation frequencies are proportional to the frequency differ-
ence of the tones, and thus, to the bandwidth of the masker.
A weighting function w(k) was added to the formula of the
initial AM-R to take this into account.

The optimized AM-R computes the tonality after weight-
ing the modulation frequency components of the modulation
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Fig. 3. Block diagram of the AIC. The real-part of the filter
output is used as BMM. hcl, acf, and cross-correlation with
the neighboring channel follow.

spectrogram with a perceptual weighting function w(k):

AM-R =

l
2∑

k=1

|w(k)×A(k)|

|A(0)|
(1)

where A(k) is the amplitude modulation spectrum. The op-
timized AM-R processing is depicted in Figure 2. Different
spectral resolutions were generated by using different DFT
lengths in different bands (l = 4096; 2048; 1024; 512; 256),
which led to higher spectral resolution for the calculation of
AM-R in low frequency regions

3.2. Auditory image correlation (AIC)

The auditory image correlation (AIC) [7] is a tonality measure
based on the so called “auditory image model” (AIM) [13,14].
AIM simulates the auditory processing of everyday sounds in
the form of an “auditory image” (AI) that is intended to repre-
sent our initial impression of the sound. At higher abstraction
level, the AI is constructed in three steps: a filter bank sim-
ulates the basilar membrane motion (BMM). Then, a multi-
channel neural activity pattern (NAP) is computed like that
observed in the auditory nerve. Further, a bank of strobed
temporal integration (STI) units, one per channel, converts
this neural activity pattern into a dynamic AI [14].

The AIC uses intra- and inter-channel correlations of the
multi-channel activity patterns to analyze envelope fluctua-
tions. As shown in Figure 3, AIC uses the filters of the PM
instead of the gammatone filters in the original AIM [13, 14];
the real parts of the filter outputs are taken as the BMM.
The conversion to the NAP is done using “half-wave recti-
fication,” logarithmic “compression,” and “lowpass” filtering
(hcl). Half-wave rectification simulates the unipolar response
of the hair cells. The progressive loss of phase locking with
increasing frequency was implemented using a second order
leaky integrator with a cutoff of 1200 Hz [15].

Since AIC is designed only to estimate tonality, it was suf-
ficient to model STI with an autocorrelation function (acf):
strong periodicity leads to maxima in the output of the acf
at positions corresponding to the period [7, 13]. However, in
this setup, dirac-shaped acf of white noise signals are smeared
due to the shaped (filtered) white noise, which leads to errors
in the estimation. To overcome this, an inter-channel mea-
sure was added using the cross-correlation coefficient of the
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Fig. 4. Block diagram of the TE-R. The measure is calculated
from the harmonic mean of the TETC and the TECC.

individual channels’ autocorrelation of the neighboring chan-
nel [16], as shown in Figure 3. Further, the measure was nor-
malized with respect to the white noise to have a tonality map-
ping similar to the AM-R (0 for tonality, 1 for noisiness). The
AIC is defined as:

AIC = 1−

N∑
k=1

acfc,k × acfc−1,k√
σ2
c × σ2

c−1

(2)

where acfc,k is the acf for channel c and sample index k and
σ2
c is the variance of the acf of channel c.

3.3. Temporal envelope rate (TE-R)

Temporal envelope rate (TE-R) is introduced as another ap-
proach to analyze the envelope fluctuations with lower com-
putational complexity [7]. As depicted in Figure 4, TE-R is
based on an intra- and an inter-channel correlation analysis.
In contrast to AIC, TE-R avoids the computation of entire
acfs with very long buffer lengths.

An intra-channel temporal envelope measure was de-
signed based on the idea of using threshold crossings to
determine noisiness on the temporal envelope: for every
channel, the short-time average of the magnitude filter output
(temporal envelope) is taken as a threshold value. Fluctua-
tions around this threshold are counted. The number of cross-
ings is then normalized to a reference crossing value, which
is obtained by averaging crossing numbers for white noise
input. An inter-channel temporal envelope measure analyzes
the correlations between different channels of the temporal
envelopes of the filter outputs. The number of channels for
the estimation of the inter-channel measure is generally a
design parameter. The immediate lower neighboring channel
was considered for the current implementation. As shown in
Figure 4 the harmonic mean of the intra- and inter-channel
measures generates the TE-R.

Similar to the AM-R and the AIC, the TE-R gives a tonal-
ity/noisiness value which lies between 0 and 1, indicating
strong tonality or strong noisiness, respectively.
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Fig. 5. Block diagram of the PSFM.

3.4. Partial Spectral Flatness Measure (PSFM)

Johnston [17, 18] applied a spectral flatness measure (SFM)
to perceptual audio coding. Based on the idea of perceptual
entropy, the model deployed SFM as a distinction measure
between tone-like and noise-like maskers [17,18]. The model
used a short-time power spectrum with fixed analysis frame
length for Bark-wide bands. Similarly, Taghipour et al. [9]
introduced the tonality measure “partial spectral flatness mea-
sure” (PSFM) as the ratio of the geometric and the arithmetic
means of short-time squared magnitude spectrum, |Sst(k)|2,
of the input signal. Short-time spectra of different spec-
tral resolutions are generated by discrete Fourier transforms
(DFT) of different lengths of 4096, 2048, or 1024 for low,
middle and high frequencies, respectively [9]. The PSFM is
calculated corresponding to the individual band-pass filters
as:

PSFM =

N2−N1+1

√
N2∏

k=N1

|Sst(k)|2

1

N2−N1 + 1

N2∑
k=N1

|Sst(k)|2
(3)

where 0 ≤ PSFM ≤ 1. N1 and N2 were chosen in a way
that for each filter output the range extended to the double of
its efficient bandwidth [9]. The block diagram of the PSFM
is shown in Figure 5. Only three FFTs1 are calculated for one
set of tonality values. In this paper, the PSFM is used as a
reference for the comparison.

4. THE EXPERIMENTAL CODING SETUP

The tonality estimation methods were implemented in the
PM. For the subjective quality test, an MDCT2-based experi-
mental coding setup was chosen. A fixed input frame length
of 1024 samples was used, which is equivalent to an MDCT
window length of 2048 samples. Different variants of the PM
were applied for quantizer control, each of which included
one of the tonality estimation methods. Although an entropy
coding was not applied, entropy rates were estimated. The
different versions were controlled to have a desired average
data rate, estimated for a large set of standard test audio sig-
nals with varying characteristics. This was done by applying
a scaling factor to the estimated MTs. An equal average
entropy rate of 48 kbit/s was chosen.

1Fast Fourier transform
2Modified discrete cosine transform
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5. SUBJECTIVE QUALITY TEST

The four tonality estimation methods were compared to each
other by means of MUSHRA (multiple stimuli with hidden
reference and anchor) test [19]. Six items were chosen, which
possess various characteristics (all mono with 48 kHz sam-
pling frequency). Table 1 shows a list of used items with the
corresponded estimated entropy in each condition. The sub-
jects performed the MUSHRA test using a Graphical User
Interface (GUI) developed by Fraunhofer-IIS [9, 10].

For each test item, subjects rated the quality of each
condition in comparison to the reference/original. The con-
ditions were: a hidden reference, a lowpass filtered anchor
(fc = 3.5 kHz), and four coded versions with AIC, TE-R,
AM-R, and PSFM. Subjects were asked to rate the hidden
reference at 100, as far as they could detect this. The order
of appearance of the audio files (items) and the order of the
codecs (conditions) were randomized, as described in [19].

16 normal-hearing, well-trained subjects participated in
the test. However, inspection of the results showed that two
subjects should be discarded. For several items, they had not
detected the hidden reference and/or the lower anchor. Ad-
ditionally, their ratings for the coded conditions showed an
extremely low variability. Hence, the final statistical analysis
was based on the results of 14 subjects: 13 male and 1 female,
aged between 21 and 39 (mean 30, median 30).

6. RESULTS

The results of the MUSHRA test are depicted in Figure 6.
For each item and condition, the mean rating across sub-
jects and the corresponding 95% confidence interval are
shown. The scores for the hidden reference and the low an-
chor are represented by orange and magenta, respectively.
Red, green, blue, and black represent AIC, TE-R, the AM-R
and the PSFM, respectively. To analyze the results, a two-
way repeated-measures ANOVA was carried out with factors
“item” and “condition.” A significant effect of item was
found [F (5, 65) = 10.0, p < 0.001]. The effect of condition
was also significant [F (5, 65) = 148.6, p < 0.001]. There
was a significant interaction between item and condition
[F (25, 325) = 8.4, p < 0.001].

Table 1. Estimated entropy rates in kbit/s for different items.

AIC TE-R AM-R PSFM
Female vocal - es01 58.40 59.39 61.68 57.06
Eng. m. speech - es04 61.44 56.25 54.36 49.97
Harpsichord - si01 29.87 30.40 34.31 38.13
Castanet - si02 72.17 90.73 79.86 73.32
S. orchestra - sc02 39.29 47.82 49.28 45.39
Pitch-pipe 26.87 24.33 29.24 31.04
Average 48.01 51.49 51.46 49.15
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Fig. 6. Results: mean ratings and confidence intervals (95%)
across 14 subjects [7]. The abscissa shows the items. Re-
sults for the hidden reference are shown by orange, the lower
anchor by magenta, the AIC by red, the TE-R by green, the
AM-R by blue, and the PSFM by black. For each item, the
subjective quality ratings for different conditions are shown.
The ordinate shows a quality scale between 0 (very bad) and
100 (excellent).

It can be observed in Figure 6 that the hidden ref-
erence was rated significantly higher than all the other
conditions; similarly, the low anchor scored significantly
lowest (all pairs p < 0.001). Since the focus was to
compare the four coded versions to each other, an ad-
ditional two-way repeated-measures ANOVA was carried
out with the same factors, but only on data for the four
coded conditions. A significant effect of item was found
[F (5, 65) = 10.0, p < 0.001]. A significant effect of con-
dition was found [F (3, 39) = 31.1, p < 0.001]. There
was a significant interaction between item and condition
[F (15, 195) = 8.6, p < 0.001].

Post hoc pairwise comparisons (Fisher’s least significant
difference, LSD) between the four coded conditions showed
that AM-R and the PSFM were rated significantly higher than
AIC and TE-R (all pairs p < 0.001). There was no significant
difference between AIC and TE-R (p = 0.820). Similarly,
AM-R and PSFM were not rated significantly different (p =
0.666).

Due to the interaction between item and condition, it
seemed reasonable to analyze possible differences between
the conditions, item by item. A separate one-way repeated-
measures ANOVA was conducted for each item, with 4 coded
conditions.

For Femal vocal, there was a significant effect of con-
dition [F (3, 39) = 4.0, p < 0.05]. Post hoc comparisons
showed that PSFM was rated significantly higher than AIC
(p < 0.05) and TE-R (p < 0.01), even though this method
showed the lowest estimated entropy for this item among the
4 conditions; see Table 1. No further significant differences
were found. For English male speech [F (3, 39) = 0.5, p >
0.5] and Symphony orchestra [F (3, 39) = 2.0, p > 0.1],
no significant effect of condition was found. For Harpsi-
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chord, there was a significant effect of condition [F (3, 39) =
28.9, p < 0.001]. Post hoc comparisons showed that both
the AM-R and the PSFM were rated significantly higher than
both AIC and TE-R (all pairs p < 0.01). TE-R was rated
significantly higher than AIC (p < 0.05). No significant dif-
ference was found between the two best conditions. For Cas-
tanets, there was a significant effect of condition [F (3, 39) =
3.1, p < 0.05] when sphericity was assumed. However, use
of the Greenhouse-Geisser correction led to no significance
(p = 0.072). For Pitch-pipe, there was a significant effect of
condition [F (3, 39) = 25.6, p < 0.001]. LSD tests showed
that the PSFM was rated significantly higher than AIC, TE-R,
and AM-R (all pairs p < 0.01). It can be observed in Table 1
that PSFM allocates more (estimated) bits to this item than
other methods. AM-R was rated higher than AIC and TE-
R (all pairs p < 0.01). No significant difference was found
between the AIC and TE-R.

7. CONCLUSION

Three envelope analysis methods were introduced for tonality
estimation. They were implemented in a filter bank-based PM
and were compared to each other and to an existing method.
Overall, the AM-R and the PSFM scored significantly higher
than AIC and TE-R, but were comparable to each other. The
analysis of the results of the MUSHRA tests, presented here
and in [9, 10], indicate that both the PSFM and the AM-R are
appropriate, valid methods for tonality estimation.

The AIC and the TE-R might be improved by further opti-
mizations [7]. The varying analysis lengths for different chan-
nels in the PSFM and the AM-R should also be incorporated
for the AIC and the TE-R. Additionally, since the computa-
tional complexity of the TE-R is much lower compared to the
AIC, it is recommended for future improvements.
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