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Abstract—Recent years have witnessed the use of biometric
recognition systems in increasing number of applications with
the number of users growing at a steady pace. However, security
and privacy problems have arisen from this upsurge of interest
to biometric systems. Template protection methods solve such
security and privacy problems where unpredictability is a crucial
goal. Here, we study the unpredictability of biohashing (a
transformation-based template protection method) using entropy
as a measure. Our novel work outlines a systematic approach for
theoretical evaluation of biohashes using estimated entropy which
is based on degree of freedom of Binomial distribution. Our
experiments demonstrate that biohash unpredictability varies
in different threat models where the entropy of a biohash is
almost equal to its bit length under the naive scenario and is
significantly low in the advanced scenario, implying that the
amount of information kept hidden in a biohash is more likely
to be predicted.

I. INTRODUCTION

The deployment of biometric authentication systems in
real world applications (e.g., electronic identity cards and
border control systems with electronic travel documents) has
been a common practice in recent years. Although biometric
verification or identification enables fast, reliable, and se-
cure electronic authentication, widespread usage of biometrics
arises severe security and privacy issues [1], [2], [3]. In the
literature, several biometric template protection methods have
been proposed (e.g., fuzzy commitment scheme [4] and bio-
hashing [5]) in order to overcome these concerns by securing
biometric templates (e.g., face and fingerprint).

Template protection methods can be classified into two
classes [6] as biometric cryptosystems (i.e., fuzzy commit-
ment and fuzzy vault [7] and transformation-based methods
(i.e., biohashing). The biometric cryptosystems embed in or
generate secrets from biometric data and can precisely retrieve
these secrets with the use of auxiliary data during verification.
On the other hand, transformation-based approaches distort
or randomize biometric data with the use of non-invertible
functions so that the original data cannot be reconstructed
from transformed templates. Biohashing, an emerging biomet-
ric template protection method, uses a unique secret key in
order to randomize biometric template of each user. Although
biohashing methods have become very popular due to their
high authentication performance and easy deployment into
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match-on-card applications, research recently showed that they
may suffer from serious security and privacy problems [8], [9].

Comprehensive evaluation of biometric template protec-
tion methods can be carried out by theoretically analyzing
the underlying methodology and assessing its vulnerabilities
under practical attacks. For biometric cryptosystems, there
exist some theoretical analyses utilizing information theoret-
ical metrics (e.g., entropy, conditional entropy, and mutual
information) or metrics used in cryptanalysis (e.g., min-
entropy, average min-entropy, guessing entropy, and condi-
tional guessing entropy) [10]. However, the applicability of
these metrics to empirical evaluation and their computation
in practice are still unknown and need further investigation.
Unfortunately, transformation-based methods lack any such
theoretical analysis. From practical point of view, the strength
of transformation-based methods is based on the hardness of
invertibility of the underlying transformation. In some stud-
ies [11], [12], the most reasonable way of measuring difficulty
in reconstructing original biometric features via the inversion
of biohashes and practical security analysis of biohashes have
been explored. Our earlier work, which is currently under
review, has also addressed the reconstruction of biometric
features from biohashes with a novel use of sparse recovery.

This current work presents the first successful theoretical
evaluation of biometric hashing as required for thorough
analysis where the unpredictability of biohashes generated by
random projection (RP) based biohashing scheme is quantified
via estimated entropy. Since a random projection and quanti-
zation method is required in our framework, the first study of
Teoh [5] among all other recent alternatives [13] was chosen
since none has an effect on our entropy estimation method.
The amount of information a biohash carries is quantitatively
analyzed by measuring the entropy of a biohash obtained
from a face image. Furthermore, to assess to what extent a
biohash is unpredictable once the secret key of a user is stolen,
the difference in the entropy of the original biohash and the
entropy of the one created by using the stolen key along with
the biometric feature of an arbitrary person is used.

Our second contribution in this work is to estimate en-
tropies using the degree of freedom of Binomial distribution
as described by Daugman [14]. Our work demonstrates that
Daugman’s entropy estimation cannot only be applied to

2265



2016 24th European Signal Processing Conference (EUSIPCO)

iris but also to other biometric modalities (e.g., face) that
are represented with a fixed-length binary string and can be
compared via Hamming distance.

We conducted experiments in a face verification set-up
considering two different threat scenarios. Our results showed
that the entropy of a biohash is almost equal to its bit length
when the secret key of each user is kept safe. However,
in the advanced threat scenario where the secret key of a
user is compromised, the discriminative effect of the random
projection is lost and the entropy of the biohash is limited to
the entropy of the biometric feature. This is consistent with
the study of Adler er al. [15] which shows that the biometric
information for a person could be calculated by the relative
entropy between the feature distributions of that person and
the population (practically measured to be approximately 40
bits).

The second section of this paper describes the random
projection-based biometric hashing scheme and the third sec-
tion outlines the proposed entropy prediction method for
biohashes. Experimental results are discussed in the fourth
section and finally conclusions are given.

II. BIOHASHING

Biometric hashing (simply biohashing) schemes are simple
yet powerful biometric template protection methods [5], [16],
[17], [18], [19], [20]. Biohash is a binary and pseudo-random
representation of a biometric template and biometric hashing
schemes perform an automatic verification of a user based
on his biohash (a binary string). Two inputs of a biometric
hashing scheme are: i) biometric template and ii) user specific
secret key. A biometric feature vector is transformed into
another space using a pseudo-random set of vectors which
are generated from the user’s secret key. Then, the result
is binarized to produce a pseudo-random bit-string which is
called the biohash. The random projection matrix is unique
and specific to each user and it can be stored in a USB token
or a smartcard. In a practical system, a user specific random
matrix is calculated using a seed (a user specific secret key)
that is stored in a USB token or a smartcard microprocessor
through a pseudo random number generator. The seed is the
same with that used during the enrollment of a user and is
different among different users and different applications [5].
This allows revocability of the subject’s biohash in case it
is compromised. Also, the same biometric trait of a subject
can be used in different biometric recognition systems without
constituting privacy threat as two biohashes of the same person
with different keys are unlinkable.

A. Enrollment Stage

The first stage in a biometric recognition system is the
enrollment stage in which a user is introduced to the system for
the first time. His biometric record is captured and converted
to a reference biometric template which will be compared
to a fresh sample at the authentication stage. This biometric
template can be stored either in a central database or a smart
card that will be in possession of the user.

a) Random Projection: In the first step, a pseudo random
projection (RP) matrix, R € RYXF , 1s generated to transform
the PCA coefficient vectors. The RP matrix elements are
independent and identically distributed (i.i.d) and generated
from a Gaussian distribution with zero mean and unit variance
by using a Pseudo Random Number Generator (PRNG) with a
seed derived from the user’s secret key. The RP matrix projects
the PCA coefficients onto an /-dimensional space:

z = Rx, (D

where z € R! is an intermediate biohash vector.
b) Quantization: In this step, elements of the intermedi-
ate biohash vector z are binarized with respect to a threshold:

#h) 2 B @
otherwise,
where b € {0,1}" denotes the biohash vector of the user
and [ denotes the quantization threshold which can be O (sign
operator) or the mean value of the intermediate biohash vector
z, depending on the system design.

After enrollment, biometric hashes are stored in a database
or in a smart card.

B. Authentication Stage

At this stage, a claimer sends his biometric features x and
secret key to the system. The system computes the claimer’s
test biometric hash vector by using the same procedures
in the enrollment phase. The user is authenticated when
the Hamming distance between b.,,.,; (which denotes the
biohash of the user generated at the enrollment stage) and
byt (Which denotes the biohash of the user generated at
the authentication stage) is below a pre-determined distance
threshold € as follows:

> benrou (k) © baun (k) < € 3)
k=1

where @ denotes the binary XOR (exclusive OR) operator.

III. ENTROPY PREDICTION FOR BIOHASHING

The entropy of a random variable measures it uncertainty.
In other words, it is a measure of the average amount of infor-
mation required to describe a random variable. An important
theoretical measure for biometric template protection methods
is the entropy loss or mutual information (defined as the dif-
ference between unconditional and conditional entropies) [21]:

I(B;K) = H(B) — H(B|K), )

where H (B) is the entropy of biohash B and H(B|K) is the
conditional entropy of B where the corresponding secret key
K is known (i.e., stolen by an adversary). In [6], the entropy of
a biometric template is defined as the measure of the number
of different identities that are distinguishable by a biometric
system and it is a powerful indicator of its unpredictability.
However, theoretical estimation methods are required to assess

2266



2016 24th European Signal Processing Conference (EUSIPCO)

Binomial Distribution of IrisCode Hamming Distances

o
o
=
o
]
Solid curve: binomial PDF,
N=249 degrees-of-freedom, p=0.5

o 7 9.060,003 different iris comparisons
o
= O
38
&) (3]

1 mean=0.499, stnd.dev.=0.0317

min = 0.334, max = 0.664

o
o
(=]
=3
o

00 01 02 03 04 05 06 07 08 09 10
Hamming Distance

Fig. 1. Distribution of Hamming distances of interclass comparisons for iris
phase codes [14]

the entropy of a biohash since how to calculate that entropy
is not immediately clear. One approach is to compute the
bit-wise entropy of a biohash where the entropy of each bit
location is calculated using a large database of biohashes [22].
Since this approach assumes that the bits of a biohash are
independent and identically distributed, the predicted entropy
is overestimated.

A. Daugman’s Entropy Estimation

Daugman proposed a method for estimating the entropy of
iris phase codes [14]. Iris phase codes, bit strings of length
2048, are compared using the normalized Hamming distance
and the ratio of the number of disagreeing bits to the number of
total bits are used to assess the degree of dissimilarity between
two bit strings. A low dissimilarity ratio between two iris codes
are accepted as belonging to the same eye whereas as from
different eyes if it is close to 0.5.

Comparing bits corresponds to a Bernoulli trial and a bino-
mial distribution is the distribution of the sum of n Bernoulli
trials, each with the same probability. By observing the inter-
class distance distribution over a large iris database, Daugman
concluded that the distribution of the normalized Hamming
distances between iris codes are normalized binomial with an
observed mean of 0.499. Correlated Bernoulli trials reduce
the effective number of trials but the output is still binomially
distributed [23]. In iris phase codes, only a small number of
bits are mutually independent, therefore the effective number
of bits is not 2048 (number of bits in a phase code) but 249
and this corresponds to the entropy of an iris phase code [14].
In Fig. 1, the observed distribution is plotted against the
theoretical binomial (solid curve), which shows the close fit
between them.

B. Entropy of Biometric Hashing

Biohashes are bit strings as iris codes and are compared
via Hamming distance during authentication. In this work, we

utilize these similarities between biohashes and iris codes. We
use the same methodology of fitting a binomial distribution
to imposter distance data and to calculate the entropy of
biohashes via the degree of freedom in the corresponding
binomial distribution. A binomial distribution is fit to the
obtained inter-class distances (i.e., imposter comparisons) as
follows. Using the imposter comparisons between biohashes
of different subjects, the observed mean of the normalized
Hamming distances (114) and observed standard deviation (o4)
are calculated from data. This corresponds to a binomial dis-
tribution with Nj = 14(1 — pgq)/03. The theoretical binomial
distribution has the functional form:

Np!
f(m) m!(Nb_m)!ud( fia) ; (5)
where m /N, (m = 1,..., Ny) is the outcome fraction of Ny
Bernoulli trials, for our case, it is the Hamming distance for
imposter matches. The number N, (degree of freedom) of the
binomial distribution is the predicted entropy of biohashes.

IV. EXPERIMENTS AND RESULTS

We implement the entropy estimation method described
on a face verification set-up considering two different threat
scenarios. The naive threat model assumes that an adversary
has very limited information about the system and he can only
perform a brute force attack using an arbitrary face information
and a random secret key. In the advanced threat model,
essential details of the algorithms, properties of biometric data
as well as the secret keys of users are assumed to be known
by the attacker. So, the attacker can create biohashes using
any face image and the secret key of the user that he tries to
impersonate.

A. Experimental Setup and Database

In our experiments, we use the BioSecure-ds2 [24] face
database. It consists of 210 users, equally balanced by gen-
der. 8 standard camera acquisitions per person (captured in
two separate sessions) are used in our experiments. PCA
coefficients extracted from detected face images are used for
matching. The faces are automatically detected using Viola-
Jones face detector [25] and resized to 64 x 64 pixels. In order
to normalize a gray-scale face image, its mean intensity value
is extracted from each pixel and each pixel is divided by its
standard deviation.

1024-dimensional PCA coefficients are calculated for all
8 samples of 210 subjects (a total of 1680 (210 x 8) face
images). PCA training is done using the first session images
only. Applying the standard biohashing procedure, a bit-string
is created through inner product between the pseudo-random
number and 1024-dimensional PCA coefficients and quanti-
zation of the resulting vector using a predefined threshold.
One can obtain a bit-string of any length according to the
memory and security requirements of the system. In order to
demonstrate that the accuracy of the entropy analysis does
not depend on biohash length, we experiment with three test
lengths, namely 128, 256 and 512.
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TABLE I
MEAN VALUE, STANDARD DEVIATIONS, AND DEGREES OF FREEDOM FOR DIFFERENT BIT LENGTHS UNDER BOTH SCENARIOS

. Standard Degree of
Bit Length | Mean (1.q) Deviation (0;) | Freedom (V)
128 0.5000 0.0443 127
Naive Model 256 0.4997 0.0313 254
512 0.5001 0.0223 504
Advanced 128 0.3653 0.0862 31
Threat Model 256 0.3685 0.0792 37
512 0.3836 0.0761 40
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Fig. 2. Distribution of Hamming distances of interclass comparisons of
biohashes with various lengths and different threat models - first column:
naive threat model and second column: advanced threat model

B. Entropy Prediction Under Naive Threat Model

In our verification setting, all possible combinations of
matching genuine pairs are used and the first sample of each
subject is chosen for imposter matches (5880 (210 x 8 x 7/2)
genuine comparisons and 21945 (210 x 209/2) imposter
comparisons). For imposter comparisons, the observed mean
Hamming distance with standard deviation and the degree of
freedom of its corresponding binomial distribution for each
test length are given in Table I.

The figures in the first column of Fig. 2 illustrate the
distribution of imposter distances under the naive threat model
for biohashes with three test lengths. The histogram of the
interclass comparison distribution (shown in blue) forms a
perfect binomial distribution with parameters p g = 0.5001,
oq = 0.0223, and N, = 504 (for 512 bits) as shown by the
solid red line. The small difference between the actual bit
length and the predicted entropy is due to database artifacts

and it is expected that as the number of imposter comparisons
gets higher, the ratio estimated entropy in bits/bit length would
reach 1.

C. Entropy Prediction Under Advanced Threat Model

In the advanced threat model, the adversary is assumed to
have full knowledge of the system and the secret keys of
all users. The same experimental set-up of the naive model
is used in order to predict the entropy of biohashes. For a
biohash of a valid system user, an imposter biohash is created
using the secret key of that user and a biometric template
of an arbitrary user. Thus, unlike the naive model, interclass
distances are calculated between two biohashes that are created
using the same secret key for different users. The graphs
in the second column of Fig. 2 illustrate the distribution of
imposter distances for biohashes with various lengths. The
observed mean of the distribution deviates from 0.5 and
gets closer to the observed mean of genuine comparisons as
the imposter distances get smaller. Since the distribution of
genuine results is not involved in the entropy estimation, it is
not discussed here. Thus, the comparison of genuine templates
is not presented here for brevity.

This effect is also evident in the results given in Table I.
As compared to the naive model, the degree of freedom is
much lower than the actual bit length and the predicted entropy
decreases dramatically for all biohash lengths. For example,
the entropy drops from 504 to 40 for biohashes of length 512.
We argue that our results in naive and advanced scenarios are
generalizable when the database is large and representative
enough. For all biohash lengths, the estimated entropy in this
threat model is between 31 and 40 bits which is consistent
with the face entropy of 40 bits reported in [15].

V. CONCLUSION

Existing theoretical evaluations of biometric protection
methods cannot be used for assessing biohashing methods.
In this work, we have described a systematic approach to
quantify the unpredictability of random projection-based bio-
hashing scheme by using entropy as a measure. Since feature
extraction and feature normalization methods are not in our
scope, we have focused only on quantitative evaluation of
random projection and quantization steps. We have estimated
the entropy of a biohash in terms of bits via the degree of
freedom of binomial distribution under two predefined threat
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models [10]. Our experiments in a face verification setup have
demonstrated that the entropy of a biohash is almost equal
to its bit-length as expected when there is no attack against
the system (the naive threat model). On the other hand, the
entropy and hence the unpredictability of biohashes decrease
when the attacker knows the secret key of the user that he tries
to impersonate (the advanced threat model). Thus, the amount
of information kept secret in a biohash becomes more likely
to be predicted in such cases.

Potential future research directions on entropy of biohashes
can be summarized as follows. Novel random projection
methods should be studied in order to decrease the entropy
loss between the naive and advanced threat models. In ad-
dition, other applicable privacy and security metrics could
be investigated, such as the mutual information of hashes of
different users (i.e., the entropy of one hash conditional to
another hash). One other possible research direction would be
to study the suitability of universal entropy estimators (e.g.,
Coron’s or Maurer’s [26] or Kraskov’s [27]) to biohashes.
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