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Abstract—In classical Compressed Sensing, real-valued sparse
vectors have to be estimated from an underdetermined system of
linear equations. However, in many applications such as sensor
networks, the elements of the vector to be estimated are discrete-
valued or from a finite set. Hence, specialized algorithms which
perform the reconstruction with respect to this additional knowl-
edge are required. Starting from the well-known iterative hard
thresholding algorithm, a new algorithm is developed. To this
end, knowledge from communications engineering is transferred
to Compressed Sensing, resulting in a powerful though low-
complexity algorithm. Via numerical results the benefit of the
proposed algorithm is covered.

I. INTRODUCTION

In digital communications, the fundamental problem is the

recovery of discrete-valued symbols/vectors. Moreover, many

applications exist where the discrete-valued vectors which

have to be reconstructed are sparse. Established examples

are sensor networks [1], peak-to-average power reduction in

orthogonal frequency-division multiplexing [2], the detection

of pulse-width-modulated signals in radar applications [3], and

source coding [4].

In many communication scenarios, the noisy measurements

y, from which the transmitted discrete-valued sparse vector x

has to be reconstructed, are given by1

y = Ax+ n , (1)

where A ∈ R
K×L denotes the measurement matrix and n

denotes i.i.d. zero-mean Gaussian noise with variance σ2
n per

component. Throughout this paper, the sparsity s, i.e., the

number of non-zero entries in x, is assumed to be known

and the non-zero elements are drawn from the finite set C =
{−1,+1}, which corresponds to binary bipolar transmission.

At the receiver, the following problem has to be solved

x̂ = argmin
x̃∈CL

0

‖Ax̃− y‖2 s.t. ‖x̃‖0 = s , (2)

where || · ||p denotes the ℓp norm and C0 = C ∪ {0}. If

s ≪ K < L, a sparse vector has to be reconstructed

from an underdetermined system of linear equations, what is
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1Notation: || · ||p denotes the ℓp norm. Al,m is the element in the lth row

and mth column of A. AT and A−1 denote the transpose and the inverse of
A, respectively. diag(A) denotes a diagonal matrix with the same diagonal
elements as A. I is the identity matrix. QC(·): quantization (element-wise
for vectors) to a given alphabet C. E{·}: expectation. Var{·}: Variance. δ(·):
Dirac delta distribution.

commonly denoted as Compressed Sensing (CS) [5]. Problem

(2) is nonconvex due to the discrete nature of x and due to

the sparsity constraint.

In the literature, different suboptimal algorithms are known.

First, extensions of the simplex algorithm exist which solve

the relaxed but still nonconvex ℓ1-based problem [6]. Unfortu-

nately, besides the solution of a mismatched (relaxed) problem,

these algorithms exhibit a prohibitively high computational

complexity.

Second, standard CS algorithms recovering a real-valued

sparse vector like Orthogonal Matching Pursuit (OMP) [7],

Iterative Hard Thresholding (IHT) [8] and Iterative Soft

Thresholding (IST) [9] can be complemented with a subse-

quent quantizer to ensure that the result is discrete-valued [10].

It has been shown that the performance can be improved if

vector quantization (e.g., implemented via the Sphere Decoder

(SD) [11]) is applied instead of symbolwise quantization [10].

A third group of algorithms is explicitly tailored to the

discrete setup. The straightforward solution is the embedding

of the quantizer inside the algorithm, instead of applying it

only afterwards [12]. For binary transmission, this corresponds

to model-based Compressed Sensing [13]. On the one hand, in

[12] it was shown for OMP that the detection does not benefit

from the inclusion of the quantizer since the quantized symbols

do not contain any reliability information. On the other hand,

it has been shown that the performance improves if the

knowledge on the alphabet is included while still taking into

account reliability information [12]. In [14], another algorithm

employing reliability information has been proposed, which

estimates the sparse vector according to the minimum mean-

squared error (MMSE) criterion.

In this paper, an enhanced recovery algorithm is presented.

It combines knowledge from Compressed Sensing, in partic-

ular the IHT algorithm, with methods from communications

engineering such as soft feedback [15].

The paper is structured as follows. Section II gives a brief

introduction into IHT and IST. In Sec. III, the new algorithm

is derived. A comparison of the performance of the algorithms

discussed in this paper and the respective computational com-

plexities is given in Sec. IV, followed by brief conclusions in

Sec. V.

II. IHT AND IST

By now, the Iterative Hard Thresholding [8] and the Iterative

Soft Thresholding [9] algorithm belong to the standard algo-
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Fig. 1: Example of the characteristic curves for hard thresh-

olding, soft tresholding and soft feedback (s/L = 0.1).

rithms for Compressed Sensing. Each iteration consists of two

steps. First, the signal is estimated by a correlation step

x̃ = x̂+ PAT(y −Ax̂) , (3)

thereby ignoring the sparsity constraint. x̂ is a prior estimate of

x, e.g., the result of the previous iteration. The resulting x̃ is

denoted as proxy. If the columns of the measurement matrix A

are not normalized to unit length, the diagonal scaling matrix

P has to be applied. It is given by P = diag(p1, . . . , pL),
with pi = 1/‖ai‖

2
2 (ai: i

th column of A).

In the second step, the knowledge about the sparsity of x

is taken into account. To this end, a tresholding function T.(·)
is applied symbolwise. The only difference between IHT and

IST is the choice of the thresholding function. For IHT, it is

given by [8]

x̂i = TH(x̃i, s) =

{
x̃i if |x̃i| > τ(s)

0 otherwise
, (4)

i.e., all values below the threshold τ are set to zero. If the

sparsity is known, the threshold can be adjusted such that x̃

meets the desired sparsity s.

In IST, in addition to the cancellation of small values,

the values of the non-zero symbols are also reduced. The

thresholding function of is given by [9]

x̂i = TS(x̃i, τ) =





x̃i − τ if x̃i > τ

0 if − τ < x̃i < τ

x̃i + τ if x̃i < −τ

. (5)

Note that the threshold cannot be selected with respect to

the desired sparsity as in IHT. A common choice is to set

the threshold proportional to the actual estimation error [16].

Thus, the knowledge about the sparsity is ignored in IST. An

example of the characteristic curves of IHT and IST is shown

in Figure 1, purple and yellow line, respectively.

Since the result of IHT as well as of IST is real-valued, the

final estimate has to be quantized with respect to the alphabet

C0. If the exact sparsity is known (as is assumed in this

paper), the quantization threshold can be adapted accordingly.

Thus, the symbols with the s largest absolute values of x̂ are

quantized symbolwise (with respect to Euclidean distance) to

the values of C. All other symbols are set to 0. We denote

the concatenation of standard IHT or IST with symbolwise

quantization as IHT/Q and IST/Q, respectively.

The pseudocode of both algorithms is shown in Alg. 1,

Variants A and B, respectively, i.e., only the lines tagged by

an A are active for IHT/Q and the lines labeled by a B for

IST/Q, respectively.

Alg. 1 x̂ = function
(
y,A, σ2

n, s, C0
)

Variants: function = [A: IHT/Q, B: IST/Q, C: ISFT/Q]

1 ABC: x̂ = 0, r = y, P = diag([pi]) = diag([1/‖ai‖
2
2])

2 BC: σ2
d = s

L
, p̄ = 1

L

∑L

i=1 pi
3 ABC: while stopping criterion not met {

// Correlation-based proxy calculation

4 ABC: x̃ = PATr + x̂

5 BC: σ2
e = p̄σ2

n +
(
L
K

− 1
)
· σ2

d

// Hard / soft thresholding or soft values

6 A : x̂ = TH(x̃, s)
6 B : x̂ = TS(x̃, λ

√
σ2
e)

6 C: x̂ = W(x̃, σ2
e , s)

7 B : σ2
d = ‖x̂‖0

L
· λ2σ2

e

8 C: σ2
d,i = V(x̃, σ2

e , s)

9 C: σ2
d = 1

L

∑L

i=1 σ
2
d,i

// Residual

10 ABC: r = y −Ax̂

11 ABC: }
// Quantize estimate

12 ABC: x̂ = QC0(x̂)

III. ISFT

Since IHT and IST have been developed for the estimation of

real-valued sparse vectors, they do not include the knowledge

about the discrete nature of x. We introduce a new algo-

rithm where the thresholding step is modified such that the

knowledge that the elements of x are drawn from a finite

set is taken into account inside the algorithm. The applied

technique is usually denominated as utilizing soft feedback.

This principle is well-known in communications engineering,

e.g., in the context of successive interference cancellation

(SIC), a.k.a. decision-feedback equalization (DFE) [15], [17],

[18] for multiuser detection. In [12], it has been introduced to

Compressed Sensing in combination with the OMP.

Fig. 2 (upper part) shows a block diagram of IHT and IST,

interpreted as communication system. The proxy x̃, which is

calculated in the first step, can be written as noisy variant
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of x with additive estimation error e, error variance σ2
e

per component (middle part of Fig. 2). The result x̂ of the

thresholding step, on the other hand, can also be modeled as

noisy estimate of x with estimation error d, error variance σ2
d

(lower part in the block diagram). Note that the estimate of

one step influences the other step in each case.

x̂y
A

n

e,

x̂

d,

x̃

x

x

x

x̃

Soft value calc.
Proxy calc.

Thresholding /

σ2
e

σ2

d

Fig. 2: Block diagram as communications system.

A. Proxy Calculation

The correlation-based proxy calculation in Line 4 of Alg. 1

can be rewritten by [19]

x̃ = PAT(y −Ax̂) + x̂ (6)

= PAT(Ax+ n) + (I − PATA) · x̂

= Ix+ (PATA− I) · x+ PATn+ (I − PATA) · x̂

= x+ PATn+ (I − PATA) · (x̂− x) (7)

def
= x+ e , (8)

where x is the unknown correct vector and all error terms

are represented by e = x̃ − x, whose elements are assumed

to be i.i.d. zero-mean Gaussian distributed with variance σ2
e .

Note that x̂ is the result from the previous iteration, with the

estimation error d = x̂ − x and error variance σ2
d. Thus the

variance σ2
e of the new estimation error depends on the noise

variance σ2
n scaled by the squared Euclidean row norm of

PAT, and on the previous error variance σ2
d , scaled by the

squared Euclidean row norm of the scaling term I −PATA.

The latter depends on the crosscorrelation between the column

vectors ai of A = [a1, . . . ,aL], which can be calculated as

diag
(
(I − PATA)(I − PATA)T

)

= diag
(
I − PATA−ATAP T + PATAATAP T

)

= I − 2diag(PATA) + diag(D) , (9)

with D = PATAATAP T.

The ith diagonal element of D = [dl,m] is given by

di,i = p2i ·


(aT

i ai)
2 +

∑

j={1,...,L},
j 6=i

(aT

i aj)
2


 , (10)

with pi the element in the ith row and column of P . The

(squared) correlation between two different columns of the

measurement matrix depends on the matrix construction and

is lower-bounded by the well-known Welch bound [20]

max
(aT

i aj)

‖ai‖‖aj‖
≥

√
L−K

K(L− 1)
. (11)

Using this, (10) can be further simplified to

di,i ≥ p2i · (a
T

i ai)
2 +

∑

j={1,...,L},
j 6=i

p2i · ‖ai‖
2‖aj‖

2 L−K

K(L− 1)
.

(12)

If it is assumed that the scaling factor pi = 1/‖ai‖
2
2 is

approximately equal for all i, (12) can be approximated by

di,i ≈ 1 + (L− 1)
L−K

K(L− 1)
=

L

K
, (13)

With this result, and taking into account that the diagonal

elements of PATA are normalized, i.e., [PATA]i,i = 1,

the average squared row norm of I − PATA can be lower-

bounded by ( L
K

− 1).
This bound is exactly met by Welch-bound achieving ma-

trices like equiangular tight frames (ETF) [21] and it is

approximated if the measurement matrix is a scaled part of

an orthogonal matrix.2 Remember that the error vector e

also depends on the noise vector, (left) multiplied by PAT,

which leads to a variance of p̄ σ2
n, where p̄ = 1

L

∑L

i=1 pi
is the average scaling factor. Thus, in the standard case

of measurement matrices with normalized column vectors,

PATn has the same variance as n.

Putting all together, the estimation error variance after the

first step can be bounded by

σ2
e = p̄ · σ2

n +

(
L

K
− 1

)
· σ2

d . (14)

B. Soft Feedback

While the first step of the new algorithm discussed in the

previous section is equal as in IHT and IST, the hard / soft

tresholding is replaced by the calculation of the so-called soft

feedback. Standard thresholding does not take into account

the distribution of the elements of x, and hence ignores also

the constraint alphabet present in the discrete setup. The soft

values calculated in the new algorithm, on the contrary, depend

on the prior error variance, on the desired sparsity, as well as

on the finite set of possible values.

For C0 = {−1, 0,+1}, the a-priori distribution of the

elements of x is equal to

fX(x) =
s/2

L
δ(x + 1) +

L− s

L
δ(x) +

s/2

L
δ(x− 1) . (15)

The soft value x̂i = W(x̃i, σ
2
e , s) of the ith element of x is

equal to the expected value x̂i of xi given the observation x̃i

2Normalized Gaussian matrices exhibit a larger average crosscorrelation
which leads to an average squared norm of the term discussed above of
approximately L

K
.
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[22]. Using the channel model (8) and the pdf of xi (15), it

calculates to

W(x̃i, σ
2
e , s)

def
= E{xi|x̃i} =

∫ ∞

−∞

xifX(xi|x̃i) dxi

=

s
2

(
e
−

(x̃i−1)2

2σ2
e − e

−
(x̃i+1)2

2σ2
e

)

s
2

(
e
−

(x̃i−1)2

2σ2
e + e

−
(x̃i+1)2

2σ2
e

)
+ (L− s) · e

−
x̃2
i

2σ2
e

=
sinh

(
x̃i

σ2
e

)

cosh
(

x̃i

σ2
e

)
+ L−s

s
· e

+ 1
2σ2

e

. (16)

The conditioned expected value of x2
i given x̃i calculates to

E{x2
i |x̃i} =

∫ ∞

−∞

x2
i fx(xi|x̃i) dxi

=

s
2

(
e
−

(x̃i−1)2

2σ2
e + e

−
(x̃i+1)2

2σ2
e

)

s
2

(
e
−

(x̃i−1)2

2σ2
e + e

−
(x̃i+1)2

2σ2
e

)
+ (L − s) · e

−
x̃2
i

2σ2
e

=
cosh

(
x̃i

σ2
e

)

cosh
(

x̃i

σ2
e

)
+ (L−s)

s
· e

+ 1
2σ2

e

. (17)

The conditional variance σ2
d,i is then given by

V(x̃i, σ
2
e , s)

def
= σ2

d,i = Var{xi|x̃i}

= E{x2
i |x̃i} − (E{xi|x̃i})

2

=

L−s
s

· e
+ 1

2σ2
e · cosh

(
x̃i

σ2
e

)
+ 1

(
cosh

(
x̃i

σ2
e

)
+ L−s

s
· e

+ 1
2σ2

e

)2 . (18)

Remember that the previous derivations were done in a sym-

bolwise fashion. The average variance is equal to

σ2
d =

1

L

L∑

i=1

σ2
d,i . (19)

The channel model for the soft feedback is then given by (cf.

Fig. 2, lower part)

x̂ = x+ d , (20)

with the error term d and average error variance σ2
d.

Examples of the characteristic curves are given in Fig. 1

for s/L = 0.1 and σ2
e ∈ {0.01, 0.05, 0.5}. For small error

variances, the curve of soft feedback (blue) approaches the one

of quantization (black), i.e., hard decisions are possible since

the estimate is very reliable. For higher variances (blue and

red), however, the slope of the curve decreases, corresponding

to the very unreliable prior estimate x̃i.

This new algorithm employing soft feedback (SF) in each

iteration and quantization as final step is denoted by ISFT/Q

in the following. The pseudocode is given in Alg. 1, Variant

C. Note that, although the explicit calculation of the soft

TABLE I: Overview over the information used inside the

different procedures.

s x ∈ C0 σ2
e

hard thresholding exact — —

soft thresholding — — (X)

soft feedback average X X

values has been shown only for the case of C = {−1,+1}
in this paper, the derivation for any possible alphabet is

straightforward. Hence, ISFT/Q can be easily adapted to the

desired signal constellation.

An overview over the information used inside the three dif-

ferent procedures applied in IHT, IST, and ISFT, respectively,

is shown in Table I. While the sparsity of the estimate is

fixed in each iteration in the case of hard thresholding, the

reliability information in terms of error variances is ignored

completely. For soft thresholding, the situation is vice versa.

The knowledge on the sparsity is ignored, but the thresholding

function instead depends on the error variance. The proposed

soft feedback is the only procedure that takes the constraint set

into account, and furthermore includes the (average) sparsity

as well as the actual variance.

Note that, due to the quantization step at the end of the

algorithms, the final sparsity is fixed for all algorithms.

IV. SIMULATION RESULTS

To compare the new algorithm with the established ones,

numerical results are shown in this section. First, the recovery

performance is analyzed, followed by a discussion of the

numerical complexity of the algorithms.

For both comparisons, the same setup is used. The mea-

surement matrix is constructed as normalized random part

of a random orthogonal matrix, obtained by a singular value

decomposition of a random Gaussian matrix of appropriate

size. The dimensionalities are L = 258, K = 129 and s = 20.

All algorithms performed 50 iterations to ensure convergence.

The scaling factor λ which influences the thresholding function

in IST (cf. Line 6 A, Alg. 1) has been numerically optimized

to λ = 1.0. For the comparison of the performance, the

measure of interest is the symbol error rate (SER) (SER =
1
L

∑L

i=1 Pr{x̂i 6= xi}) which is achieved for a certain noise

level. The results are shown in Fig. 3. The comparison of

IST/Q (green) and IHT/Q (blue) shows that is better to take

the knowledge of the exact sparsity into account and disregard

the variance of the estimation error than vise versa. ISFT/Q

(red), which estimates the vector with respect to its finite

alphabet, clearly outperforms both standard algorithms by

0.5 dB (compared to IHT/Q) and even 2 dB (compared to

IST/Q). Please note that it has to be taken extra care of the

numerical stability when implementing W(·) and V(·).
To allow a fair comparison, the computational complexity

of the algorithms discussed in this paper is shown as well. The

average number of arithmetic operations (additions, subtrac-

tions, multiplications, and divisions) per vector is counted, the

computational effort of sinh(·), cosh(·) and e(.) is neglected
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vector for 1/σ2
n =̂ 18 dB. L = 258, K = 129, s = 20,

C = {−1,+1}. SVD-based measurement matrix.

since the functions can be stored in look-up tables. Straight-

forward implementations are assumed, e.g., the multiplication

of a matrix A ∈ R
K×L with a vector x ∈ R

L×1 costs KL
multiplications and K(L− 1) additions. In Fig. 4, the average

computational complexity including the achievable SER is

shown for 1/σ2
n =̂ 18 dB. The markers indicate the results

of the particular iterations, the horizontal distance between

two markers corresponds to the number of operations of one

iteration. Remarkably, the complexity is approximately equal

for all algorithms, since the costs for the calculation of the soft

values are negligible, no expensive operations such as vector

or matrix multiplications are required. Noteworthy, IST/Q does

not only perform worst, it also shows the slowest convergence.

V. CONCLUSION

In this paper, we have proposed a new algorithm for the

reconstruction of discrete-valued sparse signals. In contrast

to the standard algorithms IHT and IST, the knowledge of

the discrete nature of the signal is taken into account inside

the reconstruction algorithm, thereby clearly improving the

performance, without any significant increase in computational

complexity.
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