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Abstract—Robust phonetic segmentation is extremely impor-
tant for several speech processing tasks such as phone level
articulation analysis and error detection, speech synthesis, and
annotation. In this paper, we present an unsupervised pho-
netic segmentation approach and its application to noisy and
clipped speech such as mobile phone recordings. We propose
a multi-taper-based Perceptual Linear Prediction (PLP) speech
processing front-end, together with Spectral Transition Measure
(STM) and a novel post-processing technique, to improve over the
baseline STM technique. Performance of the proposed technique
has been evaluated using precision, recall and F-score measures.
Experimental results show an absolute improvement of 11% for
TIMIT and 18% for Hindi speech data (clean) over the baseline
approach. Significant improvement in phonetic segmentation was
observed for noisy speech - simulated as well as mobile phone
recordings.

Keywords—Spectral Transition Measure, Multi-taper, Percep-
tual Linear Prediction, Clipping, Babble Noise

I. INTRODUCTION

Phonetic segmentation is the process of breaking down a
given speech utterance into its basic units, namely phones.
In [1], the author emphasises the importance of accuracy
in determining the phone boundaries, and the importance of
Spectral Transition Measure (STM) as a metric for syllable per-
ception. A robust phonetic segmentation technique is essential
for speech tasks such as phone level articulation analysis and
error detection, speech synthesis, transcription annotation etc.
Several supervised and unsupervised phonetic segmentation
techniques have been proposed in the literature. In [2]-[4]
authors, address the accuracy of phonetic segmentation using
a two-step approach; the initial estimate is obtained using an
Automatic Speech Recognizer (ASR) and the boundaries are
refined using specific boundary level acoustic models [2], using
regression tree [3] and using acoustic-phonetic knowledge [4].
A similar approach is stated in [5], wherein the boundaries
are improved using powerful statistical models conditioned on
phonetic context and duration features. In [6], authors propose
phonetic segmentation using a combination of phone posterior
features and auditory attention features. Despite excellent
results, supervised methods are limited by the availability and
quality of speech corpora. Unsupervised phonetic segmentation
using Maximum Marginal Clustering (MMC), a kernel method,
is shown in [7]. In [8], phoneme boundaries are detected using
a two-layered Support Vector Machine (SVM)-based system
using frequency synchrony and average signal levels computed
using a biomimetic model of the human auditory processing.
A time-constrained agglomerative clustering algorithm to find
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the optimal segmentations is reported in [9]. These techniques
have been reported to perform well on clean speech.

Robust phonetic segmentation of speech recordings on
smart phones and tablets is valuable to building speech-
based applications. Specifically, our objective is to assess
articulation errors in the Hindi language, at phone level using
mobile applications. Two major concerns when building such
applications are (1) Smart phone and tablet recordings are
susceptible to environmental noise and clipping. (2) Hindi is
a low resource language. In such a scenario, an unsupervised
and robust phonetic segmentation approach is desirable. Hence,
we adopt Spectral Transition Measure (STM), which is closely
correlated with phonetic boundaries [10] and can be exploited
to automatically obtain phonetic boundaries in an unsupervised
manner. STM based methods have been recently used to ana-
lyze the effectiveness of Perceptual Linear Prediction Cepstral
Coefficients (PLPCC) [11] based features in speech synthesis
[12].

The main contribution of this paper is a robust phonetic
segmentation technique for mobile phone and tablet record-
ings of speech contaminated with environmental noise or
clipping. The proposed phonetic segmentation technique uses
(a) Multi-taper-PLPCC based speech front-end, together with
STM and (b) novel data driven post-processing. Multi-taper
spectral analysis introduced by Thomson [13] has been used
to determine spectral transition since it gives an enhanced
spectral estimation as compared to single taper even under
noisy conditions. Multi-taper MFCC features have recently
found application in speech related tasks [14]-[17]. The
organization of the paper is as follows: Section II describes
the STM-based phonetic segmentation approach and its limita-
tions. Section III discusses the proposed unsupervised phonetic
segmentation technique. Section IV describes the experimental
setup. Section V discusses the evaluation results. We conclude
in Section VI.

II. STM-BASED PHONETIC SEGMENTATION

Our focus is to achieve robust phonetic segmentation in an
unsupervised manner for Hindi speech. The STM algorithm
for phonetic segmentation was originally proposed using
MFCC features [10]. In [12], authors suggest an improved
STM-based phonetic segmentation technique using PLPCC
features. STM algorithm is elaborated in this section.

Let s1,s2,...,S, be the m frames of a speech signal,
such that each frame is of duration 30 ms with an overlap of
20 ms between consecutive frames. Let
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f=1f1,f2, ., fm] be the spectral features of the speech
signal, where fj is the spectral feature vector (dimension D).
The rate of change of spectral feature is defined as
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STM is defined as the mean-squared value of the rate of
change of spectral features as shown in Equation 2.
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where @ = [ay, ag, .. .,
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The locations of local maxima obtained in the STM contour
indicate a spectral transition and a possible phone boundary.

The limitations of the baseline algorithms for clean speech
signal are: (a) Spurious boundaries are introduced in the silence
(e.g. non-speech, click) part of the speech signal [10] and (b)
Over-segmentation in the long vowel regions and diphthongs
[10]. Distortions like clipping and noise further degrade the
performance of the baseline algorithm.

III. PROPOSED TECHNIQUE

Traditional phonetic segmentation techniques have reported
good accuracy in terms of precision and recall for a 20 ms
tolerance as compared with ground truth, for clean speech.
However, over-segmentation is a cause of concern in the
presence of clipping and environmental noise. We propose
the use of multi-taper based speech processing front-end,
together with STM and a novel post-processing mechanism
for obtaining optimal phonetic segmentation for noisy speech.

A. Speech processing front-end

Conventionally spectral estimation of speech is done by
applying a Hamming-window or a single taper for speech
signal processing. A major limitation of the single taper
method is that, by using one taper a significant portion of
the signal is discarded and the data points at the extremes are
down-weighted, giving a high variance for the direct spectral
estimate [18]. Hence, a multi-taper method is used so that
the statistical information lost by using just one taper is
partially recovered by using multiple windows for the same
duration. Additionally multi-taper spectrum is more robust to
noise due to its low-variance property. Noise robustness of
multi-taper spectral estimation has been discussed in [15]. The
multi-taper spectrum is a weighted sum of the several tapered
periodograms. Spectral estimation of a signal s using multi-
taper method is as follows,

N—1

i Ap Z wp(j)s(m
3=0

where wp () is the pth data taper function, M is the number of
tapers and \(p) is the weight corresponding to the p*” taper, N
is the speech frame length and k is the FFT points. In practice,
weights are designed so as to compensate for increased energy
loss at higher order tapers.

Sem, k) Je TN (3)

For our work, we apply multi-taper spectral estimation to
the PLPCC feature extraction and thus have modified speech
front-end as shown in Figure 1.
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Fig. 1: Modified frond-end processing (Feature Extraction)

Phonetic segmentation using two types of orthonormal
multi-tapers for speech front-end have been compared.

1. Sine tapers [19]

N 2 (mp(G+1)N
wp(])—\/;sm< N1 ,j=0,1,...,N—1

“)
2. Discrete Prolate Spheroidal sequences (DPSS) or Thomson
or Slepian tapers [13]

Sin[w(:T(p - .])]
(p—7)
where N denotes the desired window length in samples, w, is

the desired main-lobe cut-off frequency in radians per second,
and 7' is the sampling period in seconds.

wy(j) = ., j=0,1,....N—-1 (5

The STM algorithm as described in Section II is applied
for phonetic segmentation where the PLPCC features extracted
using multi-taper spectral estimation form the feature set
f = [fl,fg,...,fm] The STM contour is then subjected
to a post-processing technique described in Section III-B,
to eliminate spurious peaks and thereby improve the phone
boundary location estimation.

B. Dynamic threshold computation

An experimentally determined static threshold has been
used for boundary correction in [10]. In this paper we propose,
a threshold determined dynamically from the STM itself, i.e. a
threshold specific to a given speech utterance. Of the statistical
measures such as mean and median, the median of the STM
vector (of length m) 75, computed for each speech utterance
was found to be the most suitable as threshold for robust
phonetic segmentation.

STM(m), if STM(m
™, otherwise

)>T]\1

STM(m) = { ©)

The median threshold 7,;, also catered to elimination of
spurious boundaries inserted within long vowel, diphthong or
silence regions.



2016 24th European Signal Processing Conference (EUSIPCO)

IV. EXPERIMENTAL SETUP
A. Data Preparation

To validate language independence of the proposed tech-
nique, we experimented on two different language databases
i.e., (a) TIMIT and (b) an in-house phonetically balanced Hindi
corpus. Robustness of the proposed technique was validated
using simulated clipped data and noisy data.

1) Clean data:

e TIMIT American English corpus [20] - contains
2,34,925 between-phone boundaries manually deter-
mined by experts.

e Hindi speech corpus [21] - contains 55,104 between-
phone boundaries manually marked.

2) Simulated clipped data: We simulate clipping using
following transformation for both TIMIT and Hindi speech

corpus.
zc(n) = z(n),
e(n) {7’ -sgn(z[n]),

if |[x(n)| <7

7
if |x(n)| > 7 @
where z(n) is the original signal, x.(n) is clipped signal and
T is the percentage clipping introduced in the speech signal.
Clipping percentage was varied from 10 to 50 in steps of 20.

3) Simulated babble-noise data: We chose to add babble
noise to clean speech to simulate speech with background
noise like characteristics. Clean speech from TIMIT and
Hindi speech corpus were combined with babble noise from
NOISEX-92 database using the FaNT toolkit [22]. SNR of the
noisy speech was varied from 0 dB to 15 dB.

4) Test data: Test data was recorded in Hindi on three
different devices simultaneously. 18 sentences from 7 speakers
were recorded on (a) a laptop using a close talking microphone,
(b) a mobile phone (SAMSUNG Galaxy Ace GT-S5830i) using
a hands-free microphone and (c) a tablet (Nexus 7) placed fixed
on the table. Speech was recorded at 16 kH z sampling rate.
We consider the laptop recording as clean data in this set. This
data was annotated manually to establish the ground truth and
consists of 3997 phone segments for speech recorded on each
device. Speech recorded on these devices was either clipped
or contained environmental noise.

Multi-taper spectral estimation was done using 2-256 tapers
for sine tapers and 4 to 7 tapers for DPSS. Best results
(reported) were obtained with 6 tapers-DPSS.

12 dimension (D) PLP cepstral coefficients were extracted
for each 30 ms frame with 20 ms overlap. STM computation
was done over 5 frames with n = 2 in Equation 1. Both
the baseline and the proposed techniques were validated on
the above data. To measure the performance of phonetic
segmentation, we use the standard precision, recall and F-score
measures [23].

V. EXPERIMENTAL RESULTS AND ANALYSIS

A high F-score indicates high precision and high recall,
thus ensuring high system accuracy. High precision indicates
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TABLE I: Comparison of unsupervised phonetic segmentation
methods for TIMIT clean speech

Method Precision Recall F-score
(Pr) (Re) (Fs)
Dusan et al [10] 72.73 75.2 73.94
Qiao et al [9] 78.76 77.5 78.13
Baseline [12] 60.69 80.2 69.1
1.Multi-taper DPSS 64.1 82.46 72.13
2.Multi-taper DPSS + threshold 84.6 75.8 80

TABLE II: Unsupervised phonetic segmentation methods for
Hindi clean speech

Method Precision | Recall | F-score
(Pr) (Re) (Fs)
[ Baseline-Hindi [12] [ 592 ] & [ 688 |
1.Multi-taper DPSS 67.98 87.23 76.41
2.Multi-taper DPSS + threshold 93.2 81.8 87.1

low over-segmentation. In Table I, we compare the perfor-
mance of our proposed technique with known unsupervised
techniques in the literature, for TIMIT clean speech.

Over-segmentation was the key cause of poor F-score in the
baseline. Both multi-taper based speech front end and dynamic
thresholding have contributed significantly in tackling the over-
segmentation problem. Results in Table I show significant
improvement in F-score at each step (1.Multi-taper DPSS and
2.Multi-taper DPSS+threshold) of the proposed technique for
TIMIT data. Similar improvements were seen for Hindi clean
speech as shown in Table II. To the best of our knowledge,
no published results exist for this dataset using any other
unsupervised technique.

However, using a dynamic threshold as explained in Sec-
tion II-B impacts the recall adversely, since some of the weak
transitions that result in low peaks are lost due to this. An
analysis of the results showed that the transitions between
broad phone classes such as vowel-glides, vowel-nasals and
vowel-liquids are eliminated due to the post-processing. It was
found that DPSS (reported in this work) performed better than
sine tapers for clean as well as noisy speech.

Tables III and IV show the performance in terms of preci-
sion, recall and F-score using the baseline [12] and proposed
techniques for noise-induced TIMIT and Hindi speech data.
Results comparable to babble noise were seen for additive
white Gaussian noise (AWGN) as well. An improvement of
11% for TIMIT and 18% for Hindi speech data (clean) over
the baseline approach is seen. An improvement of 7% for 50%
clipping and 10% for 10 dB noise was seen for TIMIT speech.
Similarly, an improvement of 13% for 50% clipping and 12%
for 10 dB noise was seen for Hindi speech. It is evident from
the F-scores in Tables III and IV that the proposed technique
performs better as compared to the baseline technique for
clean data, clipped data and noisy data. Over-segmentation
resulting from spectral roughness caused by clipping [24] is
taken care of through spectral enhancement using multi-taper
windowing and the novel post-processing technique. Higher
improvements were seen on Hindi speech corpus; as seen
in Table T This can be attributed to distinguishable pauses
between words that caused the baseline to perform poorly and
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Fig. 2: Phonetic segmentation using baseline and proposed technique (inclusive of Multi-taper and post processing) for TIMIT
utterance ‘His captain was’; ground truth phonetic segments are marked in black.

TABLE III: Comparison of phonetic segmentation (%) using baseline [12] and proposed technique for clipped speech

Database TIMIT Hindi
Clipping Baseline Proposed Baseline Proposed
(%) Pr Re Fs Pr Re Fs Pr Re Fs Pr Re Fs
10 60.3 | 83.6 | 70.1 83.1 | 74.6 | 78.6 | 58.6 | 824 | 685 | 91.8 | 80.8 | 859
30 584 | 845 | 69.1 80.9 73 76.8 | 572 | 833 | 67.8 | 889 | 79.1 83.7
50 56.6 | 857 | 682 | 782 | 719 | 749 | 552 | 854 | 67.1 | 834 | 782 | 80.7

TABLE IV: Comparison of phonetic segmentation (%) using baseline [12] and proposed technique for speech with babble noise

Database TIMIT Hindi
Noise Baseline Proposed Baseline Proposed
(dB) Pr Re Fs Pr Re Fs Pr Re Fs Pr Re Fs
0 46.5 | 87.8 | 60.8 | 59.6 | 71.5 65 476 | 88.8 62 63 753 | 68.6
5 49.7 | 877 | 635 | 68.1 | 743 | 71.1 | 51.5 | 89.2 | 653 | 73.1 | 779 | 754
10 535 | 877 | 664 | 763 | 769 | 76.6 | 55.6 | 89.3 | 685 | 81.5 | 80.1 | 80.8
15 56.5 | 875 | 68.7 | 82.1 | 787 | 803 | 58.6 | 8.2 | 70.7 | 874 | 81.5 | 843

resulted in over-segmentation. The proposed speech processing
front-end and post-processing technique handled the over-
segmentation caused in the pause and silence regions. Figure
2 shows the phonetic segmentation using the baseline and
proposed algorithm for clean speech along with the ground
truth boundaries, wherein x(¢) is the temporal representation
of the signal and ST M (x(t)) is the STM of x(¢).

Similar experiments were carried out on test data men-
tioned in Section IV. The F-scores for the recordings on the
three devices for a tolerance interval of 20 ms are as shown
in the Table V.

VI. CONCLUSION

A robust phonetic segmentation technique is essential for
several different types of speech-based applications. With the
advent of smart devices, speech-based mobile applications
are gaining popularity. However, the performance of such
applications is impacted due to the low audio quality of the
mobile-device recorded speech. Robust phonetic segmentation

TABLE V: Comparison of phonetic segmentation (%) for
speech recordings on three different devices

Device Baseline Proposed

Pr Re Fs Pr Re Fs
Laptop | 63.5 | 786 | 702 | 833 | 694 | 757
Mobile | 489 | 80.5 | 609 | 71.6 | 722 | 719
Tablet 51.4 83 63.5 | 679 | 68.7 | 683

techniques become imperative for such a system. In this work,
we propose a multi-taper based speech front-end, together with
STM and a novel data driven post-processing technique for
phone segmentation under noisy conditions such as environ-
mental noise and clipping, commonly present in a mobile
phone recording. The proposed approach was validated on
TIMIT and a Hindi speech corpus where baseline algorithm
provided 68.8% accuracy for Hindi speech corpus and the
proposed method provided 87.1% with an improvement of over
18%. Similarly for TIMIT data, the proposed approach gave an
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improvement of 11%. Similar results were observed for a set
of speech, recorded simultaneously on three devices - a laptop
(clean data), a tablet (noisy) and a mobile phone (clipped). We
intend to use this technique as the first step for assessment of
articulation errors in mobile phone based applications.
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