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Abstract—In this paper we propose a multiple layer model
for object detection and sketch representation. Unlike most
traditional detection models focusing on the object localization,
we investigate both the object detection and sketch representation
within an unified framework. Based on the multiple layer
architecture, our model can provide the sketch information of
the detected object. Meanwhile, we generalize it from single
scale structure to multiple scales, which efficiently saves time
consumed in the image pyramids construction. To efficiently
train the classifier at the top layer, we employ the stochastic
gradient descent algorithm to minimize the training error and
back propagate it to the bottom layer. The experimental results
demonstrate that our model outperforms the conventional active
basis model.

Index Terms—Object Detection, stochastic gradient descent,
Multiple layer model, Sketch Representation

I. INTRODUCTION

As one of the fundamental challenges in computer vision,
object detection increasingly attracts the attention of academic
and industry researchers. It aims to localize some specific
targets from static images and dynamic videos, and sets the
basis for image understanding and behavior analysis. There-
fore, it is intensively applied to many prominent fields, such as
video surveillance, intelligent transportation, biometric feature
recognition, etc.

Object detection has been widely studied for decades. By
employing histogram of oriented gradient (HOG) features in
combination with a linear support vector machine (SVM)
classifier, Dalal et al. [1] achieved considerable gain in per-
formance and the model becomes well known in pedestri-
an detection afterwards. The Deformable Part-based Model
(DPM) [2] representing objects with the pictorial structures
also turns into one of the most outstanding frameworks.
Unlike these discriminative models [3], inspired by biological
visual system, Ying Nian Wu et al. put forward a generative
deformable model [4] consisting of a group of active basis
elements based on theories of the matching pursuit algorithm
[5] and the wavelet sparse coding [6].

However, most traditional detection models focus on target
localization. But for some challenging tasks, like posture
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recognition of motion targets, key points localization, and non-
rigid object registration and so on, we need more theoretical
information of visual patterns. In real life scenarios, the single-
scale models are hard to balance the false positive rate and
missing rate well for the existing great range of target scales
[7]. Meanwhile, they also are time-consuming to construct
image pyramids. Recently, with the overwhelming research
of multiple layer network, the necessity of numerous training
samples and long training time are the crucial conditions. For
instance, the convolved neural network [8] requires millions
of training samples and dozens of hours for training. All these
obstacles have prevented further application of multiple layer
model.

Inspired by active basis model (ABM), we construct a multi-
ple layer model for object detection and sketch representation.
Moreover, the SVM classifier is placed at the top layer, so that
the model can be learned with a few training samples. To back
propagate the training error from the top layer to the bottom
layer, the Pegasos algorithm is adopted to iteratively optimize
our model.

The contributions of the proposed model is as below.

(1) Forward and backward propagation The traditional
multiple layer model, like convolutional neural network
(CNN), only performs forward propagation at the process
of testing and backward propagation at the training. How-
ever, our model has both forward and backward at the
process of training and testing.

(2) Multi-scale model Though the original active basis model
could achieve convincing results on object detection and
description, single scale model could hardly balance the
false positive rate and missing rate well [9]. Most tradi-
tional algorithms [4] apply image pyramids to deal with
this problem which always result in the inefficiency of
detection. Our model is trained as the single scale model
but it can be generalized to an arbitrary scale by adjusting
model’s parameters.

(3) Improved Pegasos algorithm The original ABM is
learned with a forward picking process. But the absence
of the back propagation of training errors makes the
model less robust in distinguishing true positives and true
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negatives. We employ the Pegasos algorithm and place it
at the top layer of the model.

Fig. 1: Model architecture. The top layer: classification layer.
The middle layers: convolution layer, pooling layer and non-
linear layer. The bottom layer: image layer.

II. MODEL DESCRIPTION

Similar to CNN, our model consists of the image layer,
feature encoding layer (including convolution layer, pooling
layer, non-linear layer) and classification laye, as shown in
Figure 1. It can be concisely represented as the following linear
equation:

s = ωϕ(Im, B) + b (1)
ϕ(Im, B) = max(con〈Im, B〉) (2)

where the confident detection score s of detection model is
linearly determined by the features ϕ(Im, B) from the feature
encoding layer B and the classifier parameters ω and b. The
operators con(.) and max(.) represent the convolution and
pooling process.

In our model, the oriental Gabor filters play the role of filters
of the convolution layer. One-dimensional Gabor wavelet was
proposed by Gabor in 1946 [10] and it has been further
studied to put forward the two-dimensional Gabor wavelet
[11]. Gabor transformation can extract related Gabor features
representing different scales and orientations of frequency-
domain. The excellent transformation property of the Gabor
wavelet between space domain and frequency domain makes
it widely used in texture analysis and character recognition,
etc. The Gabor kernel function is defined as:

G(x, y) ∝ exp{−[(
x

σx
)2 + (

y

σy
)2]/2}eix (3)

Through transformation, rotation and scale of G(x, y),
a general format of Gabor transformation is written as
Bx,y,s,a(x1, y1) = G(x̃/s, ỹ/s)/s2, where x̃ = (x1 −
x) cosα+(y1−y) sinα, ỹ = −(x1−x) sinα+(y1−y) cosα.

Assuming an image space D and a set of Gabor elements
{Bx,y,s,α,∀(x, y, s, α)}, an active basis model consists of
Gabor filters with different orientations and positions. In
fact, Gabor features are generated by convoluting the Gabor
kernel function with images, so we can get the summation
representation of the image: I(x, y) =

∑n
i=0 ciBi(x, y)+U(x,

y), i = 1, . . . , n, where ci is the decomposition coefficient and
U(x, y) is the residual image. We encode the image layer with
the following three steps. Firstly, it starts from convolving the
images with Gabor filters at the convolution layer. Secondly,
it applies a local maximization operator to the convolution
results and thirdly a local summation operation is computed
at the non-linear layer. In the end, the SVM classifier is
adopted to get the positives. Figure 1 illustrates our simplified
architecture of learning and inference.

Fig. 2: Demonstration of an active base model, which consists
of a series of Gabor elements, displayed as ellipses.

III. SCHEME OF LEARNING

Unlike the traditional hand-crafted feature encoding, ABM
is a kind of feature learning procedure based on the sparse
coding theory. It searches for those discriminative features
from training samples. It is mainly composed of two parts: one
is the search of distinguished feature (as active basis) through
the shared sketch algorithm; the other is to learn the basis
weights.

A. Shared sketch algorithm

We employ the shared sketch algorithm to search train-
ing images for some distinguished features and regard
them as the active bases. Given a set of training images
Im,m = 1, . . . ,M , the shared sketch algorithm successively
picks Gabor elements Bi and allows perturbations within local
ranges to describe the image Im. Each of the basic feature
elements is shared by all the training images with some
perturbations.

The shared sketch algorithm adopts training images {Im,
m = 1, . . . ,M} to compute [Im, B] = h(|〈Im, B〉|2) in terms
of each image Im and Gabor element B ∈ Dictionary.
Then it chooses an ideal Bm,i which satisfies Bm,i ≈ Bi[Im,
Bm,i] to make the inner product [Im, Bm,i] maximum. The
local maximum pooling operation can get a perturbed Gabor
elements which sketch a local edge segment optimally. And
it specifically selects the candidates Bi to correspondingly
get

∑M
m=1[Im, Bm,i] and the weight of Bi which is λi =
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M/
∑
m[Im, Bm,i]. After iteratively training process the final

deformed templates and common template are generated.

B. Multiple Scale Generalization

After obtaining the single scale model we can rotate and
flip it for better matching result. To avoid cost on the image
pyramids, we propose to adjust the model directly based on
those learned active bases to produce the multiple scale model.

The original model consists of a series of active bases with
specified locations and orientations. Given a single scale model
{Bxi,yi,s,αi

, (xi, yi) ∈ D, i = 1, . . . , n}, we could get L layer
templates by (4):

xl,i = (xi − xo) · [(l − lo) · δ + 1]

yl,i = (yi − yo) · [(l − lo) · δ + 1]
(4)

In which, l = 1, . . . , L is the l − th layer, lo is the original
layer, (xo, yo) is the center of the original model, and δ is the
scale ratio.

The comparison of detection flows with image pyramids
and our multi-scale model are shown in Figure 3. Obviously
our detection flow is much faster than the original one. As is
shown in Table I, applying our model in detecting one image
could significantly promote detection speed.

Fig. 3: Detection flows with image pyramids and our multi-
scale model respectively

TABLE I: Comparison of detection time on both datasets (/s)

Dataset Method Convolution Pooling Total

Berry

ABM 2.52 1.99 8.63

ours 0.54 0.61 3.62

ε 78.3% 69.5% 58.0%

Pedestrian

ABM 0.25 0.22 0.71

ours 0.091 0.077 0.34

ε 63.9% 65.3% 52.5%

C. Stochastic Gradient algorithm

After constructing feature encoding layer ϕ, we need to
generate the classifier layer, i.e., the parameter ω and b.

(a) Berry dataset (b) Pedestrian dataset

Fig. 4: Convergence comparison of the Pegasos algorithm and
our algorithm

Following the framework of multiple layer model, we come
up with the idea to back propagate the classification error and
optimize the key parameters iteratively.

Pegasos [12] is short for primal estimated Gradient solver
for SVM. It alternates between stochastic gradient descent
steps and projection steps, which has been proved to be more
efficient than previously devised SVM solvers. The former
needs Õ(1/ε) times iterations to obtain a solution of accuracy ε
which costs Ω(1/ε2) for the latter. A typical step is a Gradient
of the objective function f(w;At) at wt. It is described as
wt+ 1

2
= wt − ηt5t, where 5t = λwt − 1

|At|
∑

(x,y)εA+
t
yx.

We use Pegasos algorithm in our model’s training process with
two improvements. The original algorithm randomly select k
features from all the training features in each iteration, but
we randomly select almost k/2 features from positive set
and negative set respectively to make a good tradeoffs. The
convergence efficiency is shown in Figure 4. Moreover, we
reform the learning of b by adding a dimension of w from
1 ∗ n (n denotes the number of selected Gabor elements) to
1∗ (n+ 1). Thus, b is also learned during the descent process.
By this meaning, the training flow forms a close loop of
learning–detecting–training–re-detecting process which makes
the training process effective.

IV. ARCHITECTURE OF INFERENCE

After learning the active bases, including the deformable
template B = (Bi = Bxi,yi,s,αi

, i = 1, . . . , n) and the
weight vector Λ = (λi, i = 1, . . . , n), our targets could be
inferred by sum-max maps with bottom-up scoring and top-
down sketching.

The bottom-up operation is decomposed into four steps.
Firstly, convolve the input image with Gabor filters at d-
ifferent locations and orientations. Secondly, apply a local
maximization operator to the convolved result to find an edge
segment at a nearby orientation and location. Thirdly, a local
summation operator is applied to compose edge segments that
could form the template at this location. Finally we score each
composition to decide which one would be the target. The log-
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TABLE II: The missing detection rate corresponding to 10−1

FPPI.

Method Pedestrian Berry

Ours 4.3% 38.4%

Original 15.2% 56.3%

likelihood is computed as:

l(x) =
n∑
i=1

[λimax(∆x,∆α)h(|〈I,Bx+xi+∆x,s,αi+∆α〉|2)

− logZ(λi)] (5)

In this section, multiple local maximums corresponding to
multiple targets can be obtained based on their confident score.
Then, the non-maximum suppression is employed to determine
the final detection results.

V. EXPERIMENTS AND EVALUATION

We test our multiple layer model on different datasets in-
cluding the berry images captured by ourselves and a standard
MIT pedestrian database with the resolution of 128*64. Nega-
tive samples are randomly excavated from the background and
target-free images. We manually label the ground truth in the
training datasets and test datasets. The overlap between the
detected bounding box and ground truth exceeds 80% would
be classified as a true positive. In order to quantify detection
performance, in both of the two experiments we take the false
positive per image(FPPI) curves as the evaluation standard and
take the original model [4] as a baseline.

Figure 5 shows some detection results on the berry dataset.
Images in the upper row are from the original berry dataset.
The middle row shows the detection results from ABM.
The bottom row gives our detection results and the sketch
representation. Figure 6 are the hot maps of detection scores
on the image domain. The position with brighter color is more
likely to be a true positive.

Fig. 5: Comparison of missed detections and false positives

Fig. 6: Hot maps of detection scores on the image domain

Fig. 7: FPPI curves of results on berries and pedestrians.

In practice, the scale definition differs based on the actual
scenario. The more scales of the homogeneous targets in
one scene the more layers of templates would be needed.
In consideration of the size of berries and pedestrians in our
databases we set the scales of berry model to 5 and that of
pedestrians to 3. We both evaluate the FPPI and the time
consumption in dealing with the same image sets.

To better illustrate our experimental results, we could first
take a look at the FPPI curves shown in Figure 7 and the time
consuming statistics in Table I. As it is shown in Table II,
in the pedestrian sets, our approach has fulfilled a noticeable
improvement, reducing the missing detection rate from 15.2%
to 4.3%. Simultaneously the consumed time has a speed
promotion of 58.0%. On the berry image set, we also get
a promotion of 17.9% in FPPI and reduce 47.5% in time
consuming. Figure 8 demonstrates our model has a good
generalization ability in applications of other objects.

VI. CONCLUSION

This paper proposes a multiple layer model for object
detection and sketch representation, which can be accom-
plished by an improved Gradient algorithm. Instead of image
pyramids, our multiple layer model can significantly speed
up the encoding and detection process. The back-propagation
training process can integrate more object related information
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Fig. 8: Extended experiment results on other objects

in the model, as a result it can achieve more robust detection
performance. The experimental results demonstrate the effec-
tiveness of our model.
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