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Abstract—We propose a visual speech parametrization based
on histogram of oriented gradients (HOG) for the task of
lipreading from frontal face videos. Inspired by the success of
spatiotemporal local binary patterns, the features are designed
to capture dynamic information contained in the input video
sequence by combining HOG descriptors extracted from three
orthogonal planes that span z, y and ¢ axes. We integrate
our features into a system based on hidden Markov model
(HMM) and show that by utilizing robust and properly tuned
parametrization this traditional scheme can outperform recent
sophisticated embedding approaches to lipreading. We perform
experiments on three different datasets, two of which are publicly
available. In order to conduct an unbiased feature comparison,
the process of model learning including hyperparameter tuning
is as automatized as possible. To this end, we rely heavily on
cross validation.

I. INTRODUCTION

It has been repeatedly shown that in humans, understanding
speech is a multi-modal process. Probably the most famous
example of this fact is the well known McGurk effect. It
illustrates how the apparent movement of speaker’s lips might
influence the actual acoustic perception. However, the visual
cues alone generally do not carry enough information for
reliable speech understanding. Therefore, much of the work
in the area of automatic lip-reading only considers simpler
scenarios such as recognition with small vocabulary or targets
some specific sub-problem, e.g. audio-visual fusion [1]. An
overview of recent advances in lipreading is presented in [2].

In last several years, lipreading systems based on graph em-
bedding and manifold learning algorithms have become quite
popular. Rather than manually crafting ideal features, such
systems exploit sophisticated modeling techniques in order to
project the high dimensional input to a more discriminative
subspace better suited for classification. For example, in [3]
Zhou et al. treated the input sequences as graphs, where each
node represents single frame and edges denote adjacency both
in time and across speakers. They used their framework for
embedding and length-normalizing input videos in order to
improve classification with SVM. Another example is [4],
where Pei et al. fused several features via multidimensional
scaling (MDS) with utilization of random forest for efficient
computation of affinity matrix and classified the embedded
sequences by a manifold alignment algorithm.

However, the main disadvantage of similar approaches is
their inapplicability to recognition based on sub-word units,

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

e. g. continuous speech recognition. The projection algorithms
behave essentially as static classifiers, meaning that the whole
utterance must first be normalized to a specified length before
it can be classified as a single feature vector. This makes them
closely tied to the target application, e.g. isolated phrase or
digit recognition. Thus, although interesting from an algorith-
mic point of view, utilization of these methods in real world
applications remains an open question.

In this work, we follow the traditional scheme with the well
established hidden Markov model (HMM) as a classification
algorithm and instead of modeling techniques we focus on
good feature design. Our parametrization relies on histogram
of oriented gradients (HOG) that was originally introduced
in Dalal’s and Triggs’ seminal paper [5] as a robust and
discriminative descriptor for automatic pedestrian detection.
Later, it was also applied for lipreading, see e. g. [4], [6].

Normally the HOG descriptor is extracted for each input
image or video frame individually and thus cannot capture the
dynamics of speech, which is essential for speech recogni-
tion. One of the first modifications of HOG-like features for
lipreading designed to capture speech dynamics was presented
in [7]. Pachoud et al. viewed the input video as a three
dimensional structure, which they then subsequently divided
into partially overlapping regions called macro-cuboids. On
each such region, they computed generalized 3D SIFT de-
scriptor and classified resulting sequences by aligning the
input to trained data at multiple scales. Another dynamic
modification proposed by the original authors of HOG was
applied for lipreading by Rekik et al. [8]. Here, the HOG
descriptor was extracted from = and y images of optical flow
and concatenated into single vector, thus capturing the change
between two consecutive frames.

In this paper, we propose a dynamization of HOG descriptor
that is inspired by the spatiotemporal local binary patterns
(LBP) introduced by Zhao et al. in [9]. LBP describes the
texture in terms of a histogram of binary numbers that are
formed by comparing each pixel of the image to its close
neighborhood. Zhao et al. extended the static LBP by con-
sidering the neighborhood not only in the spatial domain, but
also in time axis. As the descriptor was extracted from three
orthogonal planes (TOP), i.e. xy, xt and yt, they named the
parametrization as LBPTOP. Here, we modify the static HOG
descriptor in a similar fashion, i.e. by computing gradients in
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Fig. 1. Extraction of spatiotemporal histogram of oriented gradients.

three directions and combining the result into visual speech
parametrization.

II. SPATIOTEMPORAL HISTOGRAM OF ORIENTED
GRADIENTS

Extraction of the HOG descriptor from a single frame
proceeds as follows. The input image is divided into regular
grid of small rectangular cells with a typical size of 8 x 8
pixels. For each pixel (z,y) of each cell, a local gradient
(92, 9gy) is calculated e.g. by symmetrical difference or by
using a Sobel filter. Weighted by their magnitude, the gradient
orientations are then accumulated into a local orientation
histogram h with b bins. In order to achieve robustness to
local contrast variations, histograms from m x n blocks of
neighboring cells are concatenated into a single vector v and
normalized by a multiplicative factor a = (||v||; + €¥)~1/4,
where ¢ < ||v||g prevents division by zero for regions
without a texture and commonly ¥ = ¢ = 2. The image
descriptor is formed by concatenating all normalized vectors
v into a single hypervector x. Note that due to local contrast
normalization, each particular histogram h enters up to mn
different blocks and therefore the resulting image descriptor
x is highly redundant. In case of 64 x 64 image, 8 orientation
bins and 3 x 3 cells per block, the dimension of x is 2592,
whereas without local contrast normalization it is only 512.

In order to capture speech dynamics for our target applica-
tion, instead of only calculating spatial image gradient g,,,, we
also extract gradients from xt and yt planes where the time
axis t spans the preceding and following frames. Each of the
three gradient images is processed statically, i.e. by forming
orientation histograms with subsequent local contrast normal-
ization. The descriptors x;,, ;¢ and x,; corresponding to
their respective planes are concatenated into a single vector
and due to high redundancy and dimensionality decorrelated
and reduced by principal component analysis (PCA). We
capture dynamics longer than just two neighboring frames by
approximating the derivative in ¢ axis by a convolution with
non-causal difference of Gaussian kernel of length 7. Contrary
to the original work by Dalal and Triggs, we also apply this
kernel for x and y directions. Analogously to [9], we denote
the resulting features as Histogram of Oriented Gradient from
Three Orthogonal Planes (HOGTOP). The whole extraction
procedure is depicted in Fig. 1.

ITI. SYSTEM OVERVIEW

The visual speech features are calculated on the 64 x 64 pixel
region of interest (ROI), whose extraction consists of three
steps. First, an approximate position of the face is estimated
using the well known Viola-Jones algorithm. Second, precise
facial shape represented by 93 facial landmarks is found by
utilizing the Explicit Shape Regression method (ESR) [10].
The ESR represents a face alignment technique that takes a
discriminative rather than optimization-based approach to both
learning and fitting. However, due to fixed number of iterations
and the lack of objective function the final landmark positions
are slightly different in each frame, which introduces an inter-
frame jitter. We reduce it by running the detector from 10
random perturbations of the Viola-Jones detection and taking
the median of the fit shapes. The ROI is then considered to
be a square area barely covering the mouth and its closest
surroundings. In order to achieve scale invariance we define
its size relative to the normalized mean facial shape. The
coordinates of the ROI in the input image are then found by
computing Euclidean transformation between the normalized
shape and the detected one via least squares minimization.
To further reduce the inter-frame landmark jitter and stabilize
the ROI extraction, we average the fitting results over three
neighboring frames in time. Example ROIs obtained from
Kinect video and depth streams are shown in Fig. 2.

All the visual speech features considered in the experiments
are extracted densely for each frame (ROI) of the input video
and subjected to several steps of post-processing. First, the fea-
ture vectors are reduced to several tens of coefficients. Then,
sequences of 2K + 1 parametrizations centered around the
current frame are concatenated into a single hypervector and
reduced by linear discriminant analysis (LDA). We obtain the
class labels for LDA by force-aligning the training utterances
on a phoneme level. Finally, mean feature vector is subtracted
from the whole utterance and features eventually coupled
with their A coefficients (first order difference from previous
frame). The resulting sequence is then fed into the classifier.
All of the hyperparameters such as the optimal number of
feature coefficients, X or inclusion of A features, are cross-
validated, see section V for details.

For classification we apply the hidden Markov model
(HMM) with Gaussian mixture emission probability as imple-
mented in the HTK 3.4.1 toolkit. Since in the experiments
we perform recognition of isolated words and phrases, we
build separate HMM for each utterance in the vocabulary. The
vocabulary sizes along with other information for each of the
three datasets are presented in Table 1.

1V. DATA

We evaluate the proposed features on three different
datasets, two of which are publicly available.

TULAVD is our own dataset recorded at the Technical
University of Liberec. It contains data from 54 speakers, of
which 23 are female and 31 male with age ranging from
20 to 70 years. Each speaker uttered 50 isolated words and
100 sentences in Czech language, which were automatically
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TABLE I
DATA SPLIT AND EVALUATION PROTOCOLS USED IN THE EXPERIMENTS.
dataset vocabulary | # speakers ‘ split ‘ protocol
TULAVD 50 words 54 36:9:9 6xCV
OuluVvs 10 phrases 20 19:1 20xLOOCV
CUAVE 10 digits 36 24:6:6 6xCV

selected according to phonetic balance. Audiovisual utterances
were captured by two Logitech C920 FullHD webcams and
Microsoft Kinect, which also offers depth stream that is fully
synchronized with the video. Only the Kinect RGBD data with
resolution of 640 x480 pixels at 30 fps from the isolated words
part of the dataset is used in this work. In order to achieve
sufficient resolution and depth precision, the speakers were
positioned approximately 80 cm from the sensor. Moreover,
we minimize the noise in the depth stream by linearly inter-
polating all missing values (zeros) using neighboring values.

OuluVS [9] is a popular publicly available dataset con-
taining 20 speakers (17 male, 3 female), each of which
utters 10 different short phrases five times. Examples of such
phrases are for instance “Hello!” or “How are you?”. The
videos were recorded at 25 fps with resolution of 720 x 576
pixels in an interlaced mode. Even though OuluVS ships with
four different kinds of pre-extracted ROIs, we use our own
extraction procedure as described in section III.

CUAVE [11] represents another widely used publicly avail-
able dataset. Each of the 36 speakers (17 male, 19 female)
utters digits zero through nine in English five times in four
different ways: zero to nine, nine to zero with head moving,
zero to nine from both profile views, and randomly with head
moving. The first three types are pronounced separately, the
last are spoken as a phone number, i.e. connected digits.
Resolution of the video is 720 x 480 pixels at 29.97 fps. In
this work, we only focus on the first part, i.e. isolated digits
with static head pose.

V. EXPERIMENTS

We follow two slightly different speaker independent (SI)
evaluation protocols based on k-fold cross validation (KFCV)
in order to fairly compare the considered features. In cases
of TULAVD and CUAVE, one of the £ — 1 training blocks
is separated to serve as validation data for tuning the model
hyperparameters. Thus, all of the models ESR detector, feature
selection, or HMM, are only trained on the k& — 2 training
blocks for each split of each dataset and tuned on the remain-
ing validation block. The score reported in the experiments
is the average word accuracy (WAcc) achieved on the corre-
sponding test blocks. The advantage of such procedure is the
robustness versus overfitting, since the test set cannot provide
any feedback on how well the model will perform on unseen
data. Also, as it is almost fully automatic (apart from having
to specify the hyperparameter search space), it minimizes the
risk that the researcher will favor one model by tuning it more
carefully than the others. Due to low number of speakers and in
order to preserve compatibility with existing work, in case of
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Fig. 2. Example ROI extracted from video and depth data (left and center)
and facial landmark configuration for extraction of AAM features (right).

OuluVS we follow the usual speaker-independent leave-one-
out cross validation (LOOCYV) as in [4], [8], [9]. Overview of
data dataset splitting is shown in Tab. L.

We compare our proposed HOGTOP features with five
other parametrizations: 2D discrete cosine transform of the
ROI (DCT) with energy-based coefficient selection; principal
component analysis (PCA) of the ROI (i. e. eigenlips); 46 land-
mark active appearance model extracted from the lower of the
speaker’s face (denoted as AAM-1), see fig. 2; spatiotemporal
local binary patterns (LBPTOP) [9] extracted densely for each
frame of the utterance; and our block-based 3D DCT (DCT?3),
proposed as a simple baseline for dynamic features. DCT3
similarly to [12] divides the ROI into several overlapping
blocks, but extends the approach to incorporate the time axis as
well. Each 3D block is approximated by few DCT coefficients,
concatenated together and reduced by PCA. As mentioned
in section III, all learnable models and their hyperparameters
such as energy-based selection of DCT coefficients, PCA di-
mension, etc., are cross-validated (separately for each dataset)
as described earlier in this section.

Table II presents the results achieved on our TULAVD
dataset. The experiments were conducted separately on video
and depth data, although combination is also possible. The
results achieved on OuluVS and CUAVE are reported in table
III. There are three scores for each parametrization that differ
by post-processing applied: static (i. e. no dynamization), delta
(A), and dynamization with LDA as mentioned in section
III. Note that in the third case, A coefficients could also be
computed on top of LDA, if doing so was found beneficial by
the cross validation. As can be seen, our proposed HOGTOP
features outperform the other parametrizations in almost all
experiments, often by a large margin. This is mainly due to
the efficient exploitation of speech dynamics, which carries
essential information for reliable recognition. Contrary to other
dynamic parametrizations such as LBPTOP or DCT3, it only
focuses on local spatiotemporal changes of the input signal,
and thus deals better with variability such as speaker’s identity
or local contrast variation. However, on CUAVE dataset,
HOGTOP performed best only for the static and A cases,
as there were huge improvements of LBPTOP and DCT3 by
LDA dynamization. Reasons for this observation are not clear
and will be subjected to further investigation.

State of the art result of 89.7% WAcc for OuluVS dataset
was obtained in [4] by a fusion of several features via multidi-
mensional scaling (MDS). However, one disadvantage of such
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TABLE II
ACCURACY [%] OF ISOLATED WORD RECOGNITION ON TULAVD.

Param. video depth
stat. | A [ LDA [[ stat. [ A [ LDA
DCT 540 | 689 | 725 || 559 | 66.0 | 74.4
PCA 514 | 644 | 739 || 55.7 | 653 | 724
AAM-r 58.1 | 61.8 | 74.1 || 59.7 | 63.0 | 752
LBPTOP || 674 | 697 | 742 || 409 | 437 | 643
DCT3 616 | 708 | 75.1 || 629 | 73.0 | 703
HOGTOP || 76.1 | 80.4 | 86.4 || 721 | 75.0 | 84.4

TABLE 1II

ACCURACY [%] OF PHRASE AND DIGIT RECOGNITION ON OULUVS AND
CUAVE, RESPECTIVELY.

Param. OuluVS CUAVE
stat. | A [ LDA [[ stat. [ A [ LDA

DCT 63.0 | 762 | 792 [ 647 | 742 | 814

PCA 60.5 73.9 77.9 61.2 69.7 80.1

AAM-r 728 | 760 | 821 || 634 | 647 | 79.0
LBPTOP || 62.0 | 542 | 825 || 69.6 | 67.6 | 91.2
DCT3 733 | 823 | 795 || 713 | 786 | 883

HOGTOP || 755 | 796 | 85.7 || 80.3 | 81.6 | 855

TABLE IV

COMPARISON OF OUR WORK TO THE STATE OF THE ART.

OuluVvs CUAVE
Ref. | Acc[%] || Ref. | Acc [%]
MSHMM 89.9 LBPTOP 91.2
[4] 89.7 HOGTOP 85.5
HOGTOP 85.5 [13] 83.0
3] 813 [12] 77.1

algorithm is the inapplicability to recognition based on sub-
word units, e.g. continuous speech recognition. Our system
that is focused on good feature design rather than classification
algorithm reaches only slightly worse recognition rate, but due
to utilization of HMMs it is easily extensible to sub-word
units and suitable for incorporation into an audio-based speech
decoder. Moreover, with fusion of several parametrizations
(PCA, LBPTOP, HOGTOP) via multi-stream synchronous
HMM (MSHMM) we obtained accuracy of 89.9 %, a result
on par with [4].

Comparison of our work to the state of the art on the
CUAVE dataset is rather complicated, as there is no agreed
upon evaluation protocol. The closest work in terms of
methodology probably are [12], [13]. There were three cases
in our experiments that outperformed the 83% word accuracy
achieved in [13] with the visemic AAM features, but the
results could be influenced by the choice of face alignment
algorithm, data split, etc. Table IV summarizes our results
and compares them to the results reported in few other works.
The MSHMM in the first column denotes the fusion of PCA,
LBPTOP and HOGTOP via synchronous multistream HMM.

VI. CONCLUSION

We have presented visual speech features based on spa-
tiotemporal histogram of oriented gradients for automatic
lipreading from frontal face videos. The descriptors are ex-
tracted from three orthogonal planes, concatenated together
and reduced by PCA, thus capturing both texture and dynamic
information. We have demonstrated superior performance of
our features to other existing parametrizations in experiments
on three different datasets. In order to conduct an unbiased
comparison, the evaluation protocol was designed to be as in-
dependent of the supervisor as possible and most model hyper-
parameters were cross validated automatically. On both tested
publicly available datasets our system achieved state of the
art accuracy, showing that provided quality features traditional
HMM-based approach can perform on par with sophisticated
manifold learning methods. Although not considered in this
work, the advantage is then straightforward extensibility to
continuous speech recognition and audio-video fusion.
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