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Automatic Detection of Laser Marks in Retinal
Digital Fundus Images
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Abstract—Diabetic retinopathy (DR) is the most frequent
complication of diabetes mellitus that affects vision to the point of
causing blindness. In advanced stages its progress can be delayed
with laser photocoagulation which leaves behind marks on the
retina. Modern screening programs rely on automatic diagnostic
algorithms to detect signs of DR in patients. These systems
performance may be impaired when patient retina presents
marks from previous laser photocoagulation treatments. Since
these patients are already being treated, it is desirable to detect
and remove them from the screening program. An algorithm
that automatically detects the presence of laser marks in retinal
images using tree-based classifiers is proposed and the results
on its performance are obtained and described. Two new public
accessible datasets containing retinal images with laser marks are
provided in this paper.

Keywords—Diabetes,Biomedical image processing, Feature ex-
traction, Classification algorithms.

I. INTRODUCTION

Diabetic retinopathy is charaterized by a set of lesions on
the retina caused by complications that accompany diabetes
mellitus and it is the leading cause of preventable blindness
amongst working age population. It is recommended that
each diabetic patient participates in a DR screening program
annually by taking non-invasive digital retinal fundus pho-
tographies. Typically an optometrist performs a first grading,
and if the images captured contain significant presence of
microaneurysms (MA) or exudates (EX), then the patient is
referred to an ophthalmologist for further follow-up. Strategies
and recommendations to implement cost-effective DR screen-
ing programs have been increasing in the last years. The main
objective of these programs is to reduce the workload and
manual burden of the specialists and ensure a high coverage
of the target population in a short period of time [1] with
the help of automated diagnostic algorithms. Some of these
automatic DR detection algorithms are shortly described and
reviewed by Dawn Sim et al. [2].

In DR screening initiatives, such as the one in the centre
region of Portugal, every person with diabetes mellitus is called
for screening and occasionally patients that already underwent
laser surgery show up. These patients either do not remember
having been treated or are aware of the fact that they were
treated, but still believe they should participate. Such situations
pose two problems: if lesions are detected, the patient will
unnecessarily be scheduled for a medical appointment, when
he is already being treated; if no lesions are detected, the
patient will be rescheduled for annual re-screening. In either
case this causes an unproductive burden to the health care
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Fig. 1. (a) Retinal image of a healthy person - "No Laser” class (b) Retinal
image of a patient having undergone photocoagulation treatment - “Laser”
class.

system. It is therefore valuable to automatically detect laser
marks that result from photocoagulation treatments on retinal
fundus images. Doing so, not only treated patients are removed
from the screening programs and directed to adequate follow-
up, but also a filtering step is performed before unnecessary
processing of the images to detect DR lesions.

II. RELATED WORKS

Despite the interest in being able to detect the presence
of laser marks left by photocoagulation treatment, very few
publications have been produced describing methods for their
automatic detection. In [3] Dias et al. a method is described
which is an adaptation of a previously developed retinal image
quality evaluation algorithm [4] to detect the presence of laser
marks in digital fundus images. In [5] Syed et al. proposed an
algorithm which is based on classification using support vector
machines (SVM) with inputs consisting of 3 color-domain
features, 2 texture-domain features and 4 shape features. In [6]
Tahir et al. proposed a classifier based on minimum distance
clustering to decide if an image represented by 10 scalar
features contains laser marks. The features used include a
measure of spatial compactness of the presumed laser marks as
well as nine other values quantifying color and intensity such
as maximum value of hue and saturation, mean and maximum
of intensity (luminance) as well as mean and maximum values
of the red and green color channels. The classifiers used
were trained and tested using a non-publicly available dataset
containing 380 retinal images.

III. AUTOMATIC LASER MARKS DETECTION ALGORITHM

The laser marks detection algorithm proposed classifies
an input retinal image as either “Laser” or "No Laser” (as
illustrated in Fig. 1). The approach followed is typical for
this type of image classification problem and involves a pre-
processing stage that prepares the images for several segmenta-
tion steps that identify candidate laser marks, for which several
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features are computed. The classification is done using tree-
based algorithms that operate on those features. The datasets
used to develop the classification algorithm and assess its
performance are now described.

A. Materials

Eight public datasets and three proprietary datasets were
used in this work. All the public datasets contained exclusively
images without laser marks and thus were labeled as ”"No
Laser” and the proprietary datasets contain images with and
without laser marks.

Table I briefly describes the datasets containing retinal
images available to the scientific community and Table II
shows the proprietary datasets used in this work.

TABLE 1. SUMMARY OF THE PUBLIC DATASETS USED
Dataset # Images Resolutions Description
13 images were not used as
1444x960 they presented laser scars,
Messidor (M) [7] 1200 2240x1488 according to experts. The list
2304x1536 of these cases can be found in
Table Al of [8].
1440x960
e-ophtha MA 1504x1000 . . .
(EOMA) [9] 148 20481360 Contains visual traces of MA.
2544x1696
1440x960
e-ophtha No MA 1504x1000
(EONMA) [9] 233 2048x1360 Images of healthy people.
2544x1696
1440x960
e-ophtha EX 1504x1000 .
(EOEX) [9]. [10] 47 2048x1360 Signs of EX presence.
2544x1696
e-ophtha No EX 35 20481360 | Exudate-free i
X xudate-free images.
(EONEX) [9]. [10] 2544x1696
Vess‘el-Ba.sed Retinal images without

Registration 22 1200x1143 las arks

(VBR) [11] aser marks.

50 Healthy Left and right eyes of
People (HP) [12] 100 1612x1536 | 50 pealthy volunteers.
Foveal Avascular There are 25 images from

Zone Detection 60 720x576 healthy subjects and 35
(FAZD) [13] from patients with DR.
TABLE II. SUMMARY OF THE PROPRIETARY DATASETS USED

Dataset 7 Laser # No Laser Description
Laser Marks TImages classified by experts
Dataset - from an ongoing DR screening
DR Screening 203 419 program in Portugal. Further
information about this dataset
(LMD-DRS) can be found at [14].
Laser Marks Contains retinal images from
Dataset - Before before and after treatment of
and After 34 15 9 patients with DR. Further
Photocoagulation
Treatment information about this dataset
(LMD-BAPT) can be found at [14].
Proprietary Dataset Retinal images from a DR
Jodio Dias 101 2095 screening program conducted
(PDJD) [3] in Portugal before 2013.

The datasets LMD-DRS and LMD-BAPT were made pub-
licly available by the authors and they can be accessed and
downloaded at http://beam.to/Imd.

B. Pre-processing

Before classification each image is pre-processed to ease
the following segmentation stage. The image is first circularly
cropped leaving only a central region of interest (ROI). This
operation uses a mask similar to the one shown in Fig. 2(a).
Fig. 2(b) shows an example of a resulting cropped image.
During the photocoagulation treatment medical doctors avoid
damaging the Vascular Network and the Optic Disc (OD) and
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so there will be no laser marks on the OD region or over
the vascular network and its vicinity. This fact is used to
define a binary mask containing the pixels of the OD region
and of the vascular tree (see Fig. 2(c)). These pixels will
not be considered during the identification of the laser mark
candidates. OD detection is based on the method from [15]
and the blood vessels extraction is based on the Contourlet
Transform as defined in [16].

Poor illumination of the retina and other problems origi-
nated during image capture can result in fundus images with
large spatial variations in the locally averaged luminances.
These problems are minimized by first converting the image
to the L*a*b* colorspace followed by the application to each
pixel of a local averaging operation with a square kernel
with constant value. This filtering operation corrects most of
the uneven illumination problems as it can be seen in the
example of Fig. 2(d) and Fig. 2(e). Then, an adaptive histogram
equalization is applied to the corrected L* channel to improve
the contrast of the image after which the image is converted
back to the RGB colorspace. Additionally three information
channels, Red, Hue and Saturation, are computed for use in
the calculation of several intensity-based features. The last pre-
processing step is the application of a 5x5 median filter to
the green channel to reduce its noise. The resulting luminance
image is shown in Fig. 2(f). For more detailed information
about the pre-processing steps please refer to [8, subsection
4.1].

(d)

Fig. 2. Pre-processing of retinal image from Fig. 1 (a) ROI mask (b) Cropped
(c) Vessels and OD mask (d) Luminance channel before uneven illumination
correction (¢) Luminance channel after uneven illumination correction (f) Fully
pre-processed image.

C. Candidate Laser Mark Regions Identification

An observation of retinal images of patients that underwent
photocoagulation treatment revealed that laser marks are not
randomly distributed over the entire retinal area but tend to
occur in clusters in the periphery regions, away from the
optical centre and usually have a circular shape. Therefore
one way to decide whether an image has laser marks is to
identify image blobs and determine if their spatial distribution
(expressed through different features) is consistent with that
of laser marks. Thus the first step to be carried out is the
identification of small patches of pixels that are likely to
be laser marks. Three different segmentation algorithms were
used in this step as described in the following paragraph.

The Circular Hough Transform (CHT) [17] is very fre-
quently used to detect circles in images from diverse fields
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of study. In this case, the CHT detects the marks that have a
bright circular shape. Compared to the classical CHT, instead
of using a gaussian filter, we used a bilateral filter because the
gaussian filter smoothes the image and eliminates important
information while the bilateral filter enhances the edges [18].
The CHT radius range used goes from 6 to 30 pixels for
images with a resolution of 584x768 pixels. As a second
segmentation algorithm we used the Frangi Vesselness Filter
(FVF) described in [19] which was able to isolate further
blobs missed by the CHT. The FVF is based on computation
of the eigenvalues of the image’s Hessian matrix, and was
originally proposed to identify tubular structures in the vascular
tree of angiographies, but it can also be used to detect the
vascular network and other dark blob-like pixel groups, such
as dark laser marks, in our target retinal images. The remaining
segmentation algorithm used to identify possible laser marks
is the method which we called Laser Mark Segmentation
(LMS) and described in [20, pages 133-138]. This method
was modified to use only the roundness (f;) and solidity
(f2) parameters instead of the original four parameters. As
conditions of detection we used 1 < f; < 2.5 and fo > 0.8.

For every candidate region, the center and radius were
computed, together with a likelihood parameter which indi-
cates how similar to a circle is the region. Potential laser
marks located on the OD or superimposed to the vascular
network were removed. Fig. 3 shows the original retinal image
with the candidates that resulted from the application of the
three segmentation algorithms superimposed and color coded
according to the originating detection method.

Fig. 3. Retinal image with detected candidate regions superimposed. Key:
CHT - yellow, FVF - blue, LMS - green.

D. Feature Computation

After identifying the regions candidate to be laser marks,
a total of 65 features are computed and used as input to a
classifier that determines if the retinal image belongs to the
“Laser” or to the "No Laser” categories.

The features used are divided in four categories:

e  Geometrical Descriptors - 12 features that include
the number of candidate regions detected by each
segmentation algorithm (3 features), the total area of
blobs detected by each method (3 features), average
radius (1 feature), radius variance (1 feature), and
averages of the likelihood values described in the
previous subsection, as well as two measures that
are the weighted areas of CHT and FVF detected
regions where the weighting factors are the likelihoods
computed before.
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o  Texture Descriptors - 27 features that represent tex-
ture statistics. This is the only category where the
features are computed directly from the processing im-
age and not from the candidate regions. There are six
texture descriptors described in Gonzalez and Woods
in [21, pages 464-467] computed on the green channel
level histogram and the remaining 21 are Gray Level
Co-occurrence Matrix (GLCM) based features: 11
Haralick features [22] plus 10 features based on [23]
and [24].

e Spatial Distribution Descriptors - 10 features that
describe the distribution of the candidate regions in the
retinal image. These features represent the distances
between the laser marks and measure their dispersion,
clustered nature or distribution randomness. These
features are computed based on spatial measures of
the convex hull [25] enclosing the candidate regions,
the covariance matrix of the centroids coordinates and
the Moran I spatial autocorrelation [26].

o Intensity-based Descriptors - 16 features based on
the intensity values of the candidate regions for each
channel computed during the pre-processing step (red,
hue and saturation) plus on the median filtered green
channel of the pre-processed image. Four intensity-
related features are computed for each of those chan-
nels following the approach delineated by Tahir’s
work [6].

It is important to state that some of these features are
normalized according to the image resolution and to the OD
size so that the proposed system is robust to variations of the
image resolution. A full description of these 65 features can
be found in subsection in [8, subsection 4.4].

E. Feature Selection and Classification Procedures

Feature selection [27] is an important process in any
classification problem because if properly done it allows
the reduction of the dimensionality of the feature space by
the removal of redundant, irrelevant and noisy data. Even
though the 65 features described intuitively seem relevant,
it is possible that only a small subset of them are in fact
relevant for the classification. As described later a relevant
subset of features was identified based on their information
gain and gain-ratios. The features selected are then used as
input to each of the four tree-based classifiers chosen in this
work: pruned C4.5 Decision Tree (DT) [28], Random Forest
with 5 trees (RF5), Random Forest with 50 trees (RF50),
Random Forest with 500 trees (RF500) [29]. The training
dataset used was a combination of the retinal images in the
LMD-DRS and EONMA datasets. These two datasets were
chosen because their images have different resolution and were
captured by different cameras, and so the training data are
diverse thus improving the training process resulting in a robust
classification system.

As mentioned before the features were selected by their
usefulness for the classification. This selection was done by
first ranking all 65 features according to their information
gains (IG) and gain ratios (GR). A threshold ¢ = 0.1 was
used with both the IG and GR values and the features were
declared relevant only if their GR or IG were higher than ¢.
Therefore two different subsets of features were obtained after
this filtering step. To remove the duplicates, these two subsets
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are used as input to the wrapper method, which returns a
predictive performance of the subset of features that provides
the best accuracy for each of the four tree-based classifiers
by making use of the classifier itself and performing an
inner stratified 5-fold cross-validation on the training dataset
(LMD-DRS + EONMA). The search method applied was the
sequential forward selection with a stop criteria of 15 nodes.

Table III shows the best subset of features and the re-
spective accuracy obtained for each classifier used during the
application of the wrapper method. The headings indicate
which information evaluator achieved the best accuracy for
each classifier. It is noteworthy that no texture descriptor was
selected.

TABLE III BEST SUBSET OF FEATURES FOR EACH TREE-BASED
CLASSIFIER AND RESPECTIVE ACCURACY
1G-DT GR-RF5 GR-RF50 GR-RF500
weighted_area_CHT moran_null_hipot moran_null_hipot moran_null_hipot
area_CHT max_laser_green likelihood_CHT likelihood_CHT
hull_area weighted_area_CHT weighted_area_CHT weighted_area_CHT
likelihood_CHT moran_i area_CHT moran_i
determinant number_CHT max_eigen area_CHT
v_dist_total determinant number_CHT trace
weighted_area_FVF variance_var_green m_dist_total max_eigen
trace variance_var_hue determinant number_CHT
var_laser_green hull variance_var_red m_dist_total
var_laser_red number_FVF max_laser_sat determinant
number_LMS mean_laser_hue mean_laser_sat area_LMS

variance_var_red
variance_var_hue
point_density
var_laser_hue
number_LMS
mean_laser_sat
Accuracy: 93.0%

mean_laser_green
mean_laser_hue

mean_laser_sat
mean_laser_red
mean_laser_green
var_laser_sat

max_laser_red
mean_laser_red
mean_laser_green

Accuracy: 92.8% Accuracy: 92.7% Accuracy: 93.3%

IV. RESULTS

The quality of the proposed algorithm was evaluated by
the Sensitivity (SENS) and Specificity (SPEC) performance
metrics. These two parameters measure its ability to correctly
classify instances and are computed according to the expres-
sions in Equation 2. The positive case is a retinal image
classified as having laser marks.

TP TN

ENS =
SENS TN+ FP

where

e TP are true positives, meaning the number of retinal
images with laser marks classified as “Laser”.

e TN are true negatives, meaning the number of retinal
images without laser marks classified as "No Laser”.

e FP are false positives, meaning the number of retinal
images without laser marks classified as “Laser”.

e FN are false negatives, meaning the number of retinal
images with laser marks classified as "No Laser”.

A stratified 5-fold cross validation was performed on the
merged dataset (LMD-DRS + EONMA) using each of the four
tree-based classifiers with the corresponding selected features.
Moreover, each classifier was trained using the dataset (LMD-
DRS + EONMA) and tested on the remaining datasets. The
performance measures were computed and their values are
listed in Table IV.

The retinal images of the 9 datasets used for testing were
merged and resulted in a single dataset containing a total
of 1749 images: 135 images “Laser” and 1614 images “No
Laser”. This merged dataset was used to test the tree-based
classifier that showed the best performance, which was the
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TABLE IV. ALGORITHM PERFORMANCE ON EACH DATASET USING
THE TREE-BASED CLASSIFIERS.
Dataset DT RES RF50 RF500
SENS SPEC SENS SPEC SENS SPEC SENS SPEC
5-fold CV 764% | 975% | 74.9% 949% | 768% | 966% | 713% | 974%
M - 99.0% B 98.6% - 98.0% - 973%
EOMA - 100% - 100% - 99.3% - 98.6%
EOEX B 100% B 100% B 97.9% - 97.9%
EONEX - 97.1% - 97.1% - 97.1% - 97.1%
VBR B 100% B 955% B 100% B 100%
HP - 99% - 96.0% - 99.0% - 99.0%
FAZD B 95.0% B 933% B 933% B 933%
LDM-BAPT | 618% | 933% | 61.6% 80.0% | 706% | 733% | 616% | 867%
PDID 97.0% - 96.0% B 93.1% B 91.1% B

decision tree, and the results are shown in Table V where
PPV is the Positive Predictive Value and NPV is the Negative
Predictive Value.

TP TN

PPV=——" aud NPV=——"" (2

TP+ FP TN+ FN

TABLE V. PERFORMANCE STATS USING THE TRAINED DECISION
TREE AVERAGED OVER ALL TESTING DATASETS.

Correctly Incorrectly . o
Classified Classified Sensitivity | Specificity PPV NPV
98.06% 1.94% 88.1% 98.9% 0.869 0.99

Analysis the results for LMD-BAPT, one realises that
retinal image 07_B2.jpg was the only false positive. As for the
13 false negatives, it can be concluded at least one “Laser”
image per patient was correctly classified by the algorithm,
except for patient 09 where none of the 3 “Laser” images
was correctly classified. Therefore, 7 out of 9 patients were
accurately detected using the trained DT classifier.

Training the pruned C4.5 classifier using the dataset (LMD-

DRS + EONMA) resulted in the DT model shown in Fig. 4
which uses only 8 of the pre-selected 13 features.

\C/eighlediareLC@

<=0.023374 >0.023374

<=0.12827/

\>0.12827
area_CHT

<=0.008758
/we\gmed,area,cw

No Laser (612.0/32.0)

>0.11106 <=0.010165

<=0.11106 /~
hull_area

weighted_area_FVF

No Laser (4.0)
<1/ ) >1 <=0.045421, >0.045421
number_LMS weighted_area_FVF
<0179 ¥ >071779 L Laser (15.0)

<=0009163/ 50009163 ‘ <= 056005/ > 056005

Qeighled,area_CHT mean_laser_green mean_laser_greﬁ—
No Laser (45.0/5.0) m No Laser (6.0/1.0)

<=0.010308/"
var_laser_red

P

"\ >0.010308 <=0.004142 /

>0004142
weighted_area_FVF
Laser (14.0)

<=0.0059 / >0.0059
var_laser_red

Laser (4.0)

‘ No Laser (18.0/3.0) ‘ ‘ Laser (5.0/1.0) ‘

<=0.007936

/ >0.007936
var_laser_green

No Laser (5.0) Laser (5.0/1.0)

Fig. 4. Decision Tree model built after training the classifier with the dataset
(LMD-DRS + EONMA).
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V. CONCLUSION

Photocoagulation treatments of diabetic retinopathy leave
scars in the retinal tissue. These marks need to be detected
both to adapt further image processing operations done in the
context of automatic diagnostic as well as to avoid repeated
screening of patients already treated. This work proposes a
simple and effective algorithm to detect these laser marks.
Results show stable performance across heterogeneous datasets
and robustness to changes of resolution. Furthermore it is
shown that the best performance is attained with a computa-
tionally simple tree-based classifier using only 8 input features.

Comparison with the only published work who uses pub-
licly available datasets [3] shows that the method proposed
here has a higher sensitivity of 97% vs. 63%.

A second important contribution of this work to the retinal
image research area is the offer for public use of a fully
classified set of test images [14], containing both images with
and without laser marks, at different resolutions.
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