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Abstract—A closed-form pseudolinear estimation algorithm
for time-difference-of-arrival (TDOA) emitter localization was
previously proposed by replacing TDOA hyperbolae with their
asymptotes, effectively transforming the TDOA localization prob-
lem into a bearings-only localization problem. Despite having a
good mean-square error (MSE) performance and low compu-
tational complexity, this algorithm was observed to suffer from
systematic errors arising from the large misalignment between
TDOA hyperbolae and asymptotes particularly in the near field
and for poor geometries, resulting in increased estimation bias. To
address the bias problem, this paper presents a systematic error
correction technique based on a two-stage estimation process in
which the estimation errors due to asymptote misalignment are
computed from an initial location estimate and then subsequently
corrected. The superior performance of the new algorithm com-
pared with the maximum likelihood estimator is demonstrated
with simulation examples.

I. INTRODUCTION

Time-difference-of-arrival (TDOA) localization is a pas-
sive emitter localization method with many applications in
multistatic radar, sonar, wireless communications and sensor
networks, to name just a few. In the 2D plane, TDOA of the
emitter signal at two sensors defines a hyperbola as possible
locations of the emitter with two foci placed at the sensor
locations. The emitter location is fixed by intersecting mul-
tiple TDOA hyperbolae obtained from different sensor pairs.
Broadly speaking, the existing estimators for TDOA localiza-
tion can be classified as (i) maximum likelihood estimator
(MLE), which is implemented as a nonlinear least squares es-
timator for Gaussian noise [1], (ii) “linearized” estimators with
parameter constraints due to nuisance parameter (see e.g. [2]–
[5]), and (iii) hyperbolic asymptote intersection, in which the
TDOA hyperbolae are substituted by linear asymptotes [6],
[7]. TDOA localization is closely related to time-of-arrival
localization, which has been studied extensively (see e.g. [8]–
[11] and the references therein).

The MLE is asymptotically unbiased and efficient. However
it does not have a closed-form solution and therefore requires
a numerical search method, which can be computationally
expensive. Being a nonlinear estimator, it is also subject
to the threshold effect [12], causing sudden degradation of

performance as noise is increased. The MLE cost function
for TDOA localization is nonconvex [3], which means that
unless an appropriate initial guess is used, numerical search
methods can diverge. Linearized TDOA algorithms suffer from
bias problems due to the correlation between data matrix and
measurement vector resulting from noise injection into the data
matrix, as well as introduction of a nuisance parameter that
is dependent on the emitter location to be estimated. Some
progress has been made in the development of solutions for the
constrained optimization problem, arising from the nuisance
parameter, achieving near-MLE performance [4]. However the
constrained solutions are computationally expensive requiring
generalized eigenvalue computations, as well as numerical
solutions for polynomial equation roots. The method of hy-
perbolic asymptote intersection, on the other hand, results
in a weighted pseudolinear estimator (weighted PLE) [6],
which has low computational complexity, but is subject to bias
problems mainly due to systematic errors caused by the gap
between the TDOA hyperbolae and their asymptotes.

The main contribution of this paper is to correct the sys-
tematic errors present in the method of hyperbolic asymptote
intersection method. The systematic error correction requires
a two-stage estimation process consisting of the weighted
PLE to generate an initial estimate followed by systematic
error estimation and correction. The main advantages of this
new two-stage TDOA localization algorithm are its superior
estimation performance over the MLE and significantly low
computational complexity compared with both the MLE and
constrained optimization solutions in [4].

The paper is organized as follows. Section II defines the
TDOA localization problem. Section III provides a brief re-
view of the MLE and the Cramér-Rao lower bound (CRLB) for
TDOA localization. The hyperbolic asymptotes and associated
angle errors are discussed in Section IV. Section V presents the
weighted PLE with systematic error correction. Comparative
simulation studies are presented in Section VI. The paper
concludes in Section VII.
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II. TDOA LOCALIZATION

The objective of TDOA localization is to estimate the un-
known location of an emitter at s = [x, y]T (where T denotes
matrix transpose) using TDOA measurements obtained from
N spatially distributed sensors (N ≥ 3) at ri = [xi, yi]

T ,
i = 1, . . . , N . The TDOA between sensors i and j is given by

τij = τj − τi, i ̸= j, i, j ∈ {1, . . . , N} (1)

where
τi =

∥di∥
c

(2)

is the time it takes for the emitter signal to arrive at sensor i,
and c is the speed of propagation for the transmitted signal.
Here ∥ · ∥ denotes the Euclidean norm, and di is the emitter
range vector from sensor i:

di = s− ri. (3)

The range-difference-of-arrival (RDOA), gij , is related to the
TDOA, τij , through

gij = ∥dj∥ − ∥di∥, i, j ∈ {1, . . . , N} (4a)
= cτij . (4b)

Each RDOA defines a hyperbola of possible emitter loca-
tions. We assume sensor 1 is the reference sensor for TDOA
measurements, following the common practice [2]. Given a
sequence of N − 1 RDOAs, the emitter location s is obtained
from the intersection of N − 1 hyperbolae:

∥s− r2∥ − ∥s− r1∥ = g12

∥s− r3∥ − ∥s− r1∥ = g13
...

∥s− rN−1∥ − ∥s− r1∥ = g1N .

(5)

To solve the above set of nonlinear equations for s, a minimum
of two equations are required (i.e., N ≥ 3) since there are two
unknowns. However, in practice, four or more sensors may be
necessary to avoid “ghost” emitters.

For continuous-wave signals, the RDOAs can be estimated
using the method of generalized cross-correlation [13]. The
resulting RDOA measurements g̃1j are

g̃1j = g1j + n1j , j ∈ {2, . . . , N} (6)

where the RDOA noise n1j is assumed to be zero-mean
Gaussian. Supposing that the signal received at each sensor is
subject to i.i.d. additive Gaussian noise, the covariance matrix
of n1j becomes

Σ = E


n12

...
n1N

 [
n12 · · · n1N

] (7a)

= σ2
nT (7b)

where σ2
n = E{n2

1j}, j = 2, . . . , N , is the RDOA noise
variance and

T =
1

2
(I + 1) (8)

with I denoting the identity matrix and 1 a matrix of ones.

III. MAXIMUM LIKELIHOOD ESTIMATOR AND CRLB

For Gaussian noise the MLE is a nonlinear least-squares
estimator

ŝMLE = argmin
s∈R2

JMLE(s) (9)

where

JMLE(s) = eT (s)Σ−1e(s), e(s) = g̃ − g(s) (10)

and

g̃ =

 g̃12
...

g̃1N

 , g(s) =

 ∥s− r2∥ − ∥s− r1∥
...

∥s− rN∥ − ∥s− r1∥

 .

Equation (9) does not have a closed-form solution. The
MLE can be computed using the Gauss-Newton (GN) algo-
rithm:

ŝ(i+ 1) = ŝ(i) + (JT (i)Σ−1J(i))−1JT (i)Σ−1e(ŝ(i)),

i = 0, 1, . . . (11)

Here J(i) is the Jacobian matrix of g(s) with respect to s
evaluated at s = ŝ(i):

J(i) =


(u2(ŝ(i))− u1(ŝ(i)))

T

(u3(ŝ(i))− u1(ŝ(i)))
T

...
(uN (ŝ(i))− u1(ŝ(i)))

T

 , uj(ŝ) =
ŝ− rj
∥ŝ− rj∥

(12)
The CRLB for TDOA localization is given by

CRLB = (JT
o Σ

−1Jo)
−1 (13)

where Jo is the Jacobian evaluated at the true emitter location.

IV. HYPERBOLIC ASYMPTOTES FOR TDOA
LOCALIZATION

For a given RDOA measurement g̃1j taken at sensors r1
and rj , the hyperbolic asymptote associated with the emitter
is a bearing line that emanates from the mid-point of sensors

m1j =
1

2
(r1 + rj) (14)

with a bearing angle

θ̃1j = tan−1

(
yj − y1
xj − x1

)
+ I1j cos−1

(
− g̃1j
∥r1j∥

)
(15)

where I1j takes on the values ±1 depending on which side
of the sensor baseline the emitter lies (see Fig. 1). The
determination of I1j can be accomplished by resorting to
clustering [6] or prior directional knowledge about the emitter
location.

The second term in the right hand side of (15) is approxi-
mately given by

cos−1

(
− g̃1j
∥r1j∥

)
≈ cos−1

(
− g1j
∥r1j∥

)
+

n1j√
∥r1j∥2 − g21j

(16)
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Fig. 1. Hyperbolic asymptote for RDOA measurement g̃1j .
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Fig. 2. Equivalent bearings-only localization problem.

whence the noise for the asymptote bearing angle θ̃1j is
obtained as

ϵ1j ≈ I1j
n1j√

∥r1j∥2 − g21j

. (17)

V. WEIGHTED PSEUDOLINEAR ESTIMATOR WITH
SYSTEMATIC ERROR CORRECTION

A. Weighted Pseudolinear Estimator for TDOA Localization

The TDOA localization problem can be transformed into
a bearings-only localization problem as shown in Fig. 2,
enabling the bearings-only PLE to be used as a “linear”
estimator for TDOA localization:

ŝWPLE = (ATW−1A)−1ATW−1b (18)

which we will refer to as the weighted PLE (WPLE) for TDOA
localization. Here

A =

 sin θ̃12 − cos θ̃12
...

...
sin θ̃1N − cos θ̃1N


b =

 [sin θ̃12, − cos θ̃12]m12

...
[sin θ̃1N , − cos θ̃1N ]m1N

 .

Hyperbolic

asymptote
RDOA

hyperbola

Systematic error =

Fig. 3. Illustration of systematic error due to misalignment between asymp-
totes and hyperbolae.

Assuming small RDOA noise and large range-to-baseline ratio,
the weighting matrix is given by

W = DTD (19)

where T is the Toeplitz matrix in (8) and D is a diagonal
matrix defined by

D = diag(d1, . . . , dN−1) (20)

with
di =

I1,i+1√
∥r1,i+1∥2 − g̃21,i+1

. (21)

In matrix D, true RDOAs g1j are replaced by RDOA mea-
surements g̃1j .

B. Systematic Errors

The WPLE defined in (18) is a biased estimator for two
main reasons:

• The hyperbolic asymptotes do not overlap with the TDOA
hyperbolae in the near-field emitters and in poor geome-
tries that are characterized by near collinearity between
asymptotes and corresponding sensor pairs (systematic
errors)

• The linearization process that leads to the WPLE causes
injection of measurement noise into the data matrix A,
thereby creating correlation between A and the measure-
ment noise vector.

While these problems with the WPLE were discussed in [6],
no solution was offered. In this subsection we address the
systematic errors and develop a simple and effective correction
method.

Fig. 3 illustrates the systematic error arising from
asymptote-hyperbola misalignment for the case of two TDOA
measurements obtained from 3 sensors. This error can be
significant resulting in nonvanishing estimation bias. Exact
determination of the systematic error is not possible without
solving the nonlinear hyperbolic fixing problem in the first
place, e.g., using the MLE. However this will defeat the
purpose of developing an alternative WPLE solution to the
localization problem at hand. The systematic error can be
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Fig. 4. Estimation of systematic error using initial emitter location esti-
mate. The vector ˆ̂sWPLE − ŝWPLE approximates the true systematic error
ˆ̂sWPLE − ŝ, which is not readily available.

approximated by employing an initial estimate for the emitter
location as a substitute for the hyperbolic fixing solution and
then finding how much systematic error would have resulted
from it if the triangulation of asymptotes were used instead.
This is depicted in Fig. 4.

Combining the systematic error approximation method in
Fig. 4 with error compensation leads to the following proce-
dure for systematic error correction:

1) Estimate the emitter location ŝWPLE using the WPLE
in (18).

2) Re-estimate the RDOAs from ŝWPLE using

ĝ1j = ∥ŝWPLE−rj∥−∥ŝWPLE−r1∥, j = 2, 3, . . . , N.
(22)

Substituting the re-estimated RDOAs into (5) will give
an emitter location estimate exactly at ŝWPLE as the
re-estimated RDOA hyperbolae will intersect uniquely,
implying zero “measurement” noise.

3) Next we determine how much error the WPLE in-
troduces using the re-estimated RDOAs. To do this,
substitute the re-estimated range differences ĝ1j for
the measured range differences g̃1j to re-estimate the
bearing angles:

θ̂1j = tan−1

(
yj − y1
xj − x1

)
+ I1j cos−1

(
− ĝ1j
∥r1j∥

)
.

(23)
4) Construct A, b and D using the re-estimated RDOAs

and bearing angles:

Â = A|θ̃12=θ̂12,··· ,θ̃1N=θ̂1N

b̂ = b|θ̃12=θ̂12,··· ,θ̃1N=θ̂1N

Ŵ = D̂T D̂

where D̂ = diag(d̂1, . . . , d̂N−1) with

d̂i =
I1,i+1√

∥r1,i+1∥2 − ĝ21,i+1

.
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Fig. 5. Simulated TDOA localization geometry. This is a poor geometry
as a result of approximate collinearity between some sensor pairs and
corresponding RDOA hyperbolae.

5) Re-estimate the emitter location using the WPLE:

ˆ̂sWPLE = (Â
T
Ŵ

−1
Â)−1Â

T
Ŵ

−1
b̂. (24)

This is the location estimate the WPLE would produce
if the true emitter location were at ŝWPLE and RDOA
measurements were available noise-free as given by ĝ1j .

6) If the WPLE introduced no systematic error, we would
have ˆ̂sWPLE = ŝWPLE. The systematic error due to
approximation of hyperbolae by hyperbolic asymptotes
is approximately given by

δ = ˆ̂sWPLE − ŝWPLE. (25)

Subtracting this error vector from the original WPLE
gives the WPLE with systematic error correction (SEC-
WPLE):

ŝSEC = ŝWPLE − δ

= 2ŝWPLE − ˆ̂sWPLE.
(26)

VI. SIMULATION STUDIES

In this section we demonstrate the effectiveness of the
proposed systematic error correction method by way of simu-
lation examples. The simulated TDOA localization geometry
is depicted in Fig. 5. The signal transmitted by an emitter posi-
tioned at s = [20, 20]T km is intercepted by N = 4 sensors at
r1 = [−3, 1.5]T km, r2 = [0, 0]T km, r3 = [3, 0.3]T km and
r4 = [6, 1.2]T km. The bias norm and root MSE (RMSE) for
the WPLE, SEC-WPLE and MLE were simulated using 5,000
Monte Carlo runs. Note that this is a particularly poor localiza-
tion geometry as a result of approximate collinearity between
some sensor pairs and corresponding RDOA asymptotes. This
will cause two problems as will be seen in the simulations:
aggravated systematic error and bias problems for the WPLE,
and early onset of the threshold effect for the MLE at relatively
small noise levels.
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Fig. 6. Comparison of bias and RMSE performance. The proposed SEC-
WPLE successfully compensates the systematic errors present in the WPLE
and achieves an RMSE performance much better than the MLE and almost
identical to the computationally demanding GTRS solution.

We have compared the estimation performance of the
WPLE, SEC-WPLE, MLE (using GN iterations) and the
constrained optimization solution employing generalized trust
region subproblem (GTRS) in [4]. Fig. 6 shows the bias
norm and RMSE versus RDOA noise standard deviation for
the simulated estimators. The square root of CRLB trace is
also included for benchmarking purposes. We observe that
the WPLE and SEC-WPLE both perform well compared with
the MLE. As the RDOA noise is increased in excess of
70 m, the MLE performance rapidly deteriorates due to the
threshold effect. The systematic errors cause the WPLE to
have a large nonvanishing bias as is evident from Fig. 6.
The SEC-WPLE on the other hand exhibits almost no bias
thanks to systematic error compensation. For small RDOA
noise, the SEC-WPLE, MLE and GTRS have almost identical
estimation performance. At large noise levels, the SEC-WPLE
and GTRS perform similarly. However, it should be noted that
the GTRS is a very complex solution with extremely high
computational complexity compared with the SEC-WPLE. To
compare the computational complexities, we measured the

average execution times for each algorithm in MATLAB,
which produced 1.0431 × 10−4 s (WPLE), 2.111 × 10−4 s
(SEC-WPLE), 0.0036 s (MLE), and 0.0033 s (GTRS).

VII. CONCLUSION

While pseudolinear estimation techniques enjoy low compu-
tational complexity, they can be plagued by severe bias prob-
lems for a number of reasons. In this paper we presented an
effective method to ameliorate the bias problem for the WPLE
proposed in [6]. The WPLE is an attractive low-complexity
solution for TDOA emitter localization. However it suffers
from the so-called systematic errors caused by misalignment
between RDOA asymptotes and hyperbolae. These errors be-
come particularly acute in the near field and for poor localiza-
tion geometries due to non-negligible misalignment between
the asymptotes and hyperbolae leading to nonvanishing bias
even as the noise tends to zero as observed in Section VI. The
proposed systematic error correction method overcomes this
problem in a two-stage error estimation process. The efficacy
of the SEC-WPLE was demonstrated by way of simulation
examples. The SEC-WPLE was observed to outperform the
MLE at noise levels near the threshold region and to perform
on par with the constrained optimization solution GTRS [4]
at a significantly reduced computational complexity.
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