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ABSTRACT

Sparse representations have been found to provide high

classification accuracy in many fields. Their drawback is the

high computational load. In this work, we propose a novel

cascaded classifier structure to speed up the decision process

while utilizing sparse signal representation. In particular,

we apply the cascaded decision process for noise robust

automatic speech recognition task. The cascaded decision

process is implemented using a feedforward neural network

(NN) and time sparse versions of a non-negative matrix

factorization (NMF) based sparse classification method of

[1]. The recognition accuracy of our cascade is among the

three best in the recent CHiME2013 benchmark and obtains

six times faster the accuracy of NMF alone as in [1].

Index Terms— Automatic speech recognition, non-

negative matrix factorization, cascade classification, cascade

processing

I. INTRODUCTION

Classification based on sparse representations (SR) [2],

originally invented for image processing [3], has raised to

be very popular and provides state-of-the-art results in many

disciplines. The model is specifically suitable for modeling

data that consists of multiple sources. Recent application

fields are for example classification of handwritten characters

[4], [5], tracking and classification of vehicles in videos

[6], MRI image analysis [7] and EEG signal analysis [8].

Some works [2], [9] no less optimize the sparse object

representation specifically for classification.

In the field of audio processing SR have been also

widely used, for example in audio classification [10], source

separation [11] and content analysis [12]. Also, in the

recent CHiME 2013 evaluation [13] the best noise-robust

automatic speech recognition (ASR) results [1], [14], [15],

[16] were achieved using the sparse non-negative matrix

factorization (NMF) method of [1] in combination with two

other methods. However, the drawback of SR acquired by it-

erative non-negative matrix factorization (NMF) algorithms,

despite the work on faster algorithms [5], [17], is their high

computational demand.

On the other hand, in the field of computer vision, for

example, in face recognition [18] and in object detection

[19], cascade processing has been succesfully used to boost

Fig. 1. Block diagram of the proposed ASR cascade.

the decision process. Whenever the difficulty of the classifi-

cation task of the input is not known beforehand, the amount

of processing can be regulated with a cascade. The simple

decisions can be made with less computing while the most

sophisticated methods are used at ambiguous cases.

In this work, our aim is to bring spectrogram factorization

based noise robust automatic speech recognition closer to

real time, while not sacrificing accuracy. Our strategy to

reduce computational load is to build a cascade of classifiers

(Figure 1), where the amount of computation is determined

according to the interpretability of the input. The decision

about instantaneous speech content can be made with simple

classifiers if the certainty of the estimate is high enough.

Estimation certainty assessment in automatic speech recog-

nition has been studied e.g. in [20] and [21], but we propose

a simple probability score (section III-C). For our cascade,

we develop a time sparse version (TS-NMF) of the NMF

method of [1]. We present also an evenly time sparse NMF

(ETS-NMF) as a comparison to the cascade structure.

II. DECISION CASCADE

A decision cascade (DC) for a classification task con-

stitutes of multiple stages where on each the confidence

on the input class is evaluated and the decision about

completion of the recognition process can be made. This

stage-wise processing accounts for the high computational

savings that are possible with a DC. A DC is able to preserve

the recognition accuracy while at the same time evading

redundant computation via early decisions. The effectivity
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of a DC results from the fact that the easily distinguishable

inputs can be recognized with less processing, i.e. with fast

classifiers, while heavier and the most accurate methods

need to be executed only for the most ambiguous inputs.

The general cascade decision process for classification is

presented in Algorithm 1.

There are two functions of special importance within the

algorithm, namely f READY
s (I) ∈ {false, true} and f CLASS

s (I) ∈
C (class labels). f READY

s is used to decide whether the

decision is ready at stage s, and f CLASS
s gives the class

prediction at the stage s.

Algorithm 1: Decision cascade of N stages.

Input: an item x to be classified

Output: class decision C

1 Set READY = false

2 Set S = 0
3 while READY 6= true ∧ S ≤ N do

4 S = S + 1
5 C = f CLASS

S (x)
6 READY = f READY

S (x)

7 return C

III. PROPOSED SPEECH RECOGNITION

CASCADE

In ASR a speech signal is converted to sequence of words.

Each word is modeled as sequence of states, and likelihoods

Lt of states are estimated in short frames, indexed by t.
Due to continuous nature of audio signal, the final class

decisions are made following a hidden Markov model of the

grammar by the Viterbi algorithm, in contrast to independent

classification in Algorithm 1 used in [18] and [19].

The stages of the proposed cascade are used to provide

increasingly accurate state likelihood estimates, which are

accumulated into a state likelihood matrix Ls. Thus the line

5 of Algorithm 1 is replaced with Ls
t = fL

s (xt), where

Ls
t ∈ R

Nc×1 and Nc is the number of states in the grammar.

The proposed ASR cascade aims at speeding up a com-

putationally intensive, but well performing method based on

SR and NMF. The cascade works maximally at 6 stages

as shown in Figure 1. The first stage uses a NN and

subsequent stages use TS-NMF method up to five times to

make f READY
s = true if possible. The order of methods within

the cascade is defined by the computation time they need to

extract the state likelihood information.

Both methods in our cascade extract spectral features of

the audio in a 25 ms frame after every 10 ms.

III-A. Neural Network classifier

The NN classifier at the first stage of the cascade has

a topology of two hidden layers, 200 neurons each, and

the output layer with Nc neurons. All the neurons use the

sigmoid function. The input to the NN is formed of 40 Mel

cepstrum coefficients (MFCCs) and delta MFCCs, together

80 features.

Interpretation of NN-output values as probabilities has

been investigated in several works, e.g. [22], [23], [24], but

we convert NN outputs yt to Bayesian posterior probabilities

of states as

LNN
t (c) = P

(

yt(c) | c
)

P (c)
/

P
(

yt(c)
)

, (1)

with equal priors P (c). For each class c ∈ C, a his-

togram based probability density functions (PDF) P (y(c))
and P (y(c)|c) are collected from the training data.

III-B. Time Sparse NMF classifier

The later stages of our decision cascade adapt a time

sparse versions (TS-NMF) of the original NMF classifier [1].

The NMF classifier processes the input signal in windows

of T = 20 frames. Spectral magnitudes from B = 40 Mel

bands from the T frames of a window make an input vector

xt of length BT for NMF classifier.

A dictionary D ∈ R
(BT )×Nd

+ of Nd = 10000 such

example vectors from training material is used for modeling

the input as x̂t = Dwt, where wt holds non-negative scores

of dictionary elements. The scores wt are solved iteratively

minimizing Kullback-Leibler divergence between x̂t and xt,

which is computationally the heaviest part of the method.

Half of the example spectrograms in the dictionary are taken

from speech content and the other half from the noise part

of training data, notated as D =
[

Dspeech,Dnoise
]

.

State likelihood estimation from scores wt is done accord-

ing to equation (2). Each example vector in Dspeech entails

state labels for T consecutive frames. The labels are encoded

as binary matrices Ld ∈ {0, 1}Nc×T to allow mapping the

scores wt to state likelihoods. An NMF state likelihood

window LNMF
t spans over time points t . . . t + T − 1 and

is given by

LNMF
t =

Nd/2
∑

d=1

Ld ·wt(d). (2)

In this work we are targeting to reduce computational

load, while not giving up the accuracy achievable with a

computationally heavy method. The NMF in [1] performs

the classification with overlapping windows where an NMF

window is factorized for each frame t = 1, 2, 3, . . .. For
evenly time sparse NMF (ETS-NMF) a new NMF window

is factorized at uniformly spaced frame indices, while in TS-

NMF the NMF windows to be factorized can be selected

freely. When evaluating ETS-NMF, we found out that with

sparsity p = 3, i.e. factorizing NMF windows for every third

t, ETS-NMF produces enough state likelihood information

to achieve the accuracy of [1]. Thus in our ASR-cascade,

the NMF factorization is allowed only for every third t.
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Fig. 2. Schema of constructing state likelihoods by NN - TS-NMF cascade processing. The state likelihood matrix LNN

(white background) is computed at the first stage. The colored curves represent values of Cs after each stage s. The threshold
θ is shown with the straight line. Where C

s does not exceed θ, NMF windows (shaded rectangles) are taken into use by

stage s+ 1. Red bars show the value of nt at each t.

III-C. Cascade decisions

To decide whether the stage s + 1 should be used to

improve state likelihood estimations, the function

f READY(Ls, t, θ) =

{

true if C
s
t ≥ θ

false else
, (3)

is used. f READY makes its decisions based on state likelihood

matrix Ls and threshold θ. In (3), Cs
t represents the certainty

of the information in Ls at time point t as

C
s
t =

1

2l

t+l−1
∑

τ=t−l

maxLs
τ

The state likelihoods Ls
t are calculated as a weighted sum

of likelihood information acquired from LNN given by the

NN stage and sets
{

LNMFi
}

for TS-NMF stages i = 2 . . . s
as

Ls
t = (1−

nt

m
) · LNN

t +
nt

m
·

[

s
∑

i=2

T
∑

τ=1

L
NMF(i−1)
t−τ+1 (τ)

]

1

,

where [·]1 denotes normalization to the ℓ1 length 1. nt

is determined by the number of overlapping NMF state

likelihood windows at t and m = 12 is used, as it gave

the best results. The procedure is elucidated in Figure 2.

The selection of points τ for NMF windows L
NMF(s−1)
τ

at each TS-NMF stage s is done as follows. First, each

interval of t where f READY(Ls, t, θ) = false is enlarged

back- and forward by T/2 frames to yield target domain

intervals for the new NMF windows. For each interval

τα . . . τω , J = ⌈(τω − τα + 1)/T ⌉ new NMF window

slots τj , j = 1 . . . J , from U unused slots are selected

if possible. The K = U − J slots are left unused as

evenly distributed as possible. Finally a new set of NMF

factorizations is computed to produce the set of state like-

lihood windows
{

L
NMF(s−1)
τj for j = 1 . . . J

}

. New NMF

state likelihood windows are generated at subsequent stages

until f READY(Ls, t, θ) = true ∀ t or the end of the cascade

is encountered. In Figure 2 the set
{

LNMF1
τj for j = 1 . . . 6

}

produced at the second stage of the cascade is illustrated as

the uppermost row of shaded NMF windows.

III-D. Utilizing state unions

In the state space of the used grammar there are many

states representing the same phone in different words. For the

cascade, it is more advantageous to report the likelihood of

a phone instead of a designated state among the phonetically

similar states. Thus, considering correlations of the NN out-

put on training data and the states’ power in discriminating

words, we selected 11 groups to be used as unions. States

of the grammar, marked as ‘word‘state, within unions are

U1 = {‘b‘2, ‘v‘2}, U2 = {‘b‘3, ‘v‘3, ‘p‘3, ‘g‘3, ‘d‘3}, U3 =
{‘c‘3, ‘t‘3}, U4 = {‘b‘4, ‘v‘4, ‘p‘4, ‘g‘4, ‘d‘4, ‘e‘4, ‘c‘4, ‘t‘4},
U5 = {‘a‘4, ‘j‘4, ‘k‘4}, U6 = {‘i‘4, ‘z‘2}, U7 = {‘m‘1, ‘n‘1},
U8 = {‘m‘4, ‘n‘4}, U9 = {‘f ‘1, ‘s‘1}, U10 = {‘g‘1, ‘j‘1} and

U11 = {‘q‘4, ‘u‘4}.
In Ls

t the likelihoods of the states within an union are

substituded with the highest of them as

Ls
t (c ∈ Ui) = max {Ls

t (c ∈ Ui)}

for i = 1 . . . 11. The keyword accuracies of both the NMF-

and NN-recognizers outside the cascade when using state

unions are reported in the experiments (Table I).

IV. EVALUATION

The evaluation is done using CHiME2013 automatic noisy

speech recognition challenge track 1 data [13], which con-

sists of utterances from 34 speakers in highly non-stationary

background of domestic noise. Average SNR varies from

−6 dB to 9 dB. The spoken sentences have strict grammar

with 51 words. The state space used to represent the words

is defined by the CHiME2013 challenge baseline system

and has 4-10 states per word, Nc = 250 states in total.

The speciality of this data set is the task of recognizing

’coordinates’ composed of a letter and a number, e.g. ’D7’.

There are 500 and 600 sentences per each SNR level in the

training and evaluation set, respectively. The training data is

used for training the NN and picking the example vectors for
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Fig. 3. The keyword recognition accuracies of the proposed cascade versus its computational load. The curves build up by

changing the threshold θ of fREADY in eq. (3). The axes on the left show the different SNR levels separately and the average

performance is shown on the right. Triangles show average accuracies of ETS-NMFp with sparsities p = 3, 4, 5, 7, 10, 20.

dictionary D of NMF. The presented recognition accuracies

are achieved with the evaluation data set.

IV-A. Performance with ETS-NMF, NN and state unions

The keyword recognition accuracies on evaluation data

with ETS-NMF and the used NN classifier outside the cas-

cade are shown in Table I. The ETS-NMF classifier with time

sparsity p = 3 utilizing state unions (SU) ’ETS-NMF3+SU’

reaches recognition accuracy 87.3 % on average over all the

noise conditions. Without SU post processing, ’ETS-NMF3’

can be seen to reach the level of the reference ’NMF[1]’.

These average accuracies of ETS-NMF3 are shown also as

the rightmost triangles in Figure 3. The positive effect of

utilizing state unions on ETS-NMF is 0.8 % on average.

The NN classifier of the first stage of the cascade,

’NN+B+SU’ in the Table I, reaches accuracy 72.6 % on

average. The positive effects of Bayesian post processing

(B) of NN outputs and utilizing state unions (SU) are about

1.5 % and 0.9 % respectively.

SNR mean -6dB -3dB 0dB 3dB 6dB 9dB

ETS-NMF3+SU 87.3 75.4 82.4 87.8 91.3 93.0 93.5

ETS-NMF3 86.6 75.1 82.0 87.4 89.9 92.3 92.8

NMF [1] 86.5 75.6 81.4 87.5 89.9 92.4 92.3

NN+B+SU 72.6 56.4 58.3 66.5 74.8 79.3 82.1

NN+B 71.7 55.0 57.5 65.9 73.8 78.6 81.1

NN 70.2 54.5 54.8 63.7 71.2 77.8 79.8

Table I. Keyword recognition accuracies with ETS-NMF3

and NN classifiers with and without using state unions (SU)

and Bayesian post processing (B).

IV-B. Accuracy and computational load of the cascade

The operating point of the proposed cascade is defined

by the threshold θ of f READY in (3), which rules the usage

of stages of the cascade. The threshold θ is set to achieve

a desired accuracy with as small computational load as

possible, or to reach as good accuracy as possible with the

available computation power. Curves of keyword recognition

accuracy, resulting from giving different values for θ, versus
the amount of needed NMF computation as percentage of

the computational load of [1] are shown in Figure 3. On

these curves we pay attention specifically to two operating

points. The first one, shown with a cross on each curve, is

the operating point with θ = 0.24. It is where the average

accuracy reaches 86.5 %, the accuracy of the original NMF

framework [1] requiring only 16.0 % of its computation.

The second crucial operating point of the cascade, which

is shown as a circle on each curve, is where the maximal

keyword recognition accuracy is reached with smallest com-

putation load. On average over all noise levels, this operating

point occurs with θ = 0.51 reaching accuracy 88.5 % and

requiring the computation of 31 % of NMF frames.

IV-C. Comparison to state-of-the-art

The recognition accuracy of the proposed cascade ranks

among the three best in CHiME 2013 challenge Track 1

results in [25]. However, an important aspect of required

computational resources was not considered in CHiME 2013

evaluation. Thus in Table II we compare the results with the

proposed cascade in comparison to the methods for which

we can estimate the computational load: the NMF method

of [1] and the winning method [26] of CHiME2013. The

computation time of the CHiME2013 winner is obviously

higher than NMFs as NMF [1] is one of the three methods

in the winning classifier combination.

accuracy computation time

CHiME2013 winner [26] 92.8 > 100 % ∗)

Proposed cascade at θ = 0.510 88.5 30.9 %

ETS-NMF3 87.3 33.6 %

Proposed cascade at θ = 0.237 86.5 16.0 %

NMF [1] 86.5 100 %

Table II. Keyword recognition accuracy of the proposed

cascade in comparison to the baseline NMF method and the

CHiME2013 challenge winning method (∗ utilizes the NMF

method as one of its three detectors).
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V. CONCLUSIONS

As automatic noisy speech recognition has proved to be

hard problem to solve, the most accurate methods currently

are far from real time processing. With clean speech simpler

methods might do well, while with noisy environment the

more advanced processing is required. A decision cascade is

a way to combine these and it is a structure to consider when

one wants to meet both the requirements, word accuracy and

computational speed, in varying conditions. In this work we

have showed that a decision cascade can be successfully

applied in ASR task. Our experiments show that the accuracy

of well performing NMF method for noisy ASR can be

achieved with a fraction of its computation time with a

decision cascade utilizing faster classifiers. In CHiME2013

keyword recognition task with our cascade utilizing a neural

network and Time Sparse NMF classifiers we achieve the

meritorious accuracy of [1] with less than 17 % of its

computation time. The full accuracy of the cascade ranks

among the three best in CHiME 2013 Track 1 challenge

and it is three times faster than the winner.
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