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Abstract—A novel method for defining an index
based on multi-level clustering of 40-Hz auditory
steady state response is presented in this paper. The
index is a measure of depth of anaesthesia which can
help monitoring depth of anaesthesia more closely
and accurately. Multi-level expectation maximization
(EM) is used for clustering the recorded 40-Hz auditory
steady state response signals recorded from human
subjects. The clustering information is used to define
the depth of anaesthesia index. Rather than extracting
the maximum amplitude and frequency at each cycle
as clustering features, principal components analysis
(PCA) is used for analyzing all samples of the cycles
and projecting data into a lower dimension space.
Both dimension reduction and clustering schemes are
unsupervised methods, hence the algorithm does not
need initial data labeling or training phase.

I. Introduction

During surgical operations depth of anaesthesia
(DoA) is constantly controlled and the does of the
anaesthetic agents are adjusted by anaesthesiolo-
gists to maintain the patients in the suitable DoA
. Although the clinical methods for measuring DoA
are simple to be used, they are subjective and can
not monitor all different stages of anaesthesia. A
standard index that shows different levels in DoA
will increase accuracy in monitoring depth of anaes-
thesia and will be a big step towards automating the
process.
Investigating the effects of level of consciousness on
40-Hz auditory steady state response (ASSR) started
in early nineties [1], [2], [3]. However all studies
are focused on investigating the variations of two
specific features in different levels of consciousness
namely the maximum amplitude and phase at each
ASSR cycle; some examples are [4], [5], [6], [7],
[8]. In this paper we proposed an algorithm that
defines an index for measuring DoA based on ana-
lyzing all samples of the ASSR cycles. The algorithm
uses principal component analysis (PCA) to extract
the most significant features. The low dimension
samples are used for clustering the cycles into 15
clusters with a multi-level expectation maximization
(EM) clustering method. DoA index, IDoA, is defined
based on the clustering results such that 0 < IDoA <
100 where IDoA = 100 shows full consciousness and
IDoA = 0 shows no brain activity.

A. Background

Current cerebral monitors of DoA are either EEG
or AEP based. After description of 40-Hz ASSR
signals by Galombos [9] some groups started to
study 40-Hz ASSR variations during anaesthesia
and sleep. 40-Hz ASSR is the electrical changes
in the ear and brain of a normally hearing person
in response to a periodic acoustic stimuli with
40 cycles per second repetition rate. 40-Hz ASSR
signal shows how neural information propagates
from the acoustic nerves in the ear to the cortex
[10]. 40-Hz ASSR is very sensitive to the state of
consciousness. Plourde and his colleges suggested
that the amplitude of the ASSR provides a more
reliable indicator of the level of consciousness than
EEG. They claimed that the muscle artifacts that
are prominent during emergence and recovery
distort EEG measurements [1]. It is observed that
during Enflourane-N2O anaesthesia 40-Hz ASSR
attenuates much more sever than what one would
predict from the effect of Enflourane-N2O on AEP
[11]. This renders 40-Hz ASSR more reliable than
other two cerebral monitors of DoA.
In our database the Bispectral index (BIS) and
MAC are also recorded at the same time with
ASSR as control values. Bispectral index (BIS)
(Aspect Medical System, Newton, MA, USA) is the
most common EEG based depth of anaesthesia
monitor. BIS is a dimensionless index between 0
and 100, where 40 < BIS < 60 indicates the surgical
level anaesthesia [12], [13]. MAC is the minimum
concentration of the volatile drug vapor in the lungs
that prevents movement in 50% of the subjects. MAC
is widely used by anaesthesiologist as a measure of
the DoA with inhalational anaesthetics.

II. Method

A. Data acquisition

After ethics approval from University of Toronto
and “Research Ethics Board” of Trillium Health
Partners (where the surgical procedures were con-
ducted) 40-Hz ASSR signals were recorded from 20
human subjects. All subjects were volunteer partic-
ipants over 18 years old, with no history of hear-
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ing loos or neurological problems. They have been
scheduled for surgical operation for primary reasons
independent of our study before being recruited.
40-Hz ASSR signals recoded from 3 to 5 minutes
before injection of anaesthetic agent till emergence
from anaesthesia. Clinical methods such as re-
sponse to verbal and tactile stimulus as well as min-
imum alveolar concentration (MAC) of the anaes-
thetic drugs and BIS index are also recorded as
control values.
Propofol which is an intravenous anaesthetic agent
is used for induction of anaesthesia in all subjects
and volatile anesthetic Sevoflurane is used for main-
taining anaesthesia on the appropriate level during
operation.
The auditory stimuli were generated with Vivosonic
IntegrityTM V500 as an AM-ASSR stimulus with
the modulation frequency of 40.68 Hz as carrier
and center frequency near 2 KHz. The stimuli was
presented binaurally to the ears of the subjects by
ER-3A-ABR insert earphone (Etymotic Research) at
the level of 60 dB HL, loud enough to generate an
ASSR but not too loud to cause discomfort for the
study participants. No earmuffs were used during
the recording for cancelling the auditory noise. EEG
signals were recorded from 11 electrodes (Fz, Cz,
C3, C4, T3, T4, A1, A2, Oz, Nape, Forehead), located
on the skull and forehead of the subjects according
to the international 10-20 electrode sites. NicoletTM

Wireless 32 amplifier is used to record the signals
in 8 differential channels (T3Fz, T4 − Fz, CzA1A2,
C3A1A2 , C4A1A2, FzA1A2, OzFz, NapeFz) the stimuli
is also recorded with the amplifier. The sampling
frequency was 12KHz and non of the electrodes had
impedance above 10 KΩ.

B. Data preprocessing

The signal recorded by EEG amplifier is a mixture
of EEG signal, the 40-Hz ASSR and noise. The ASSR
signal ratio in the recorded data is very low since
amplitude of the ASSR signal is about one tenth of
the background EEG. ASSR is buried in EEG signals
hence the first step is to denoise and extract the
ASSR from the background noise and EEG signal.
In the preprocessign stage the signals are down-
sampled five times and the outlier samples are re-
moved. Assuming the data is normally distributed
the samples further than 3 × SD from the mean
value are considered to be outliers. The signals are
then filtered with butterworth filters to filter out
the frequencies outside the frequency range 35 Hz
≤ f ≤ 45 Hz and 75 Hz ≤ f ≤ 85 Hz. The filtered
signals from the eight amplifier channels are then
synchronized with the stimuli cycles recorded with
amplifier on the ninth channel. The duration of

the signal synchronized with each stimuli sweep is
called an epoch. Each epoch is modeled as:

xk[l] = sk[l] + rk[l] (1)

where xk[l] is the ASSR synchronized with the kth
sweep of the stimuli and rk[l] is the EEG and noise
from the other sources.

For extracting the signal we used ensemble aver-
aging. Weighted ensemble averaging over 300 ASSR
epochs is used for extracting each ASSR cycle (Eq.
2). The weights are inversely proportional to the
variance of noise (Eq. 2).

x̂[l] =
1

K

K∑

k=1

ωkxk[l]

ωk =
α

E(xk − E(xk))2

Under the assumption that sk[l] is phase
locked to the stimuli, noise rl[l] is zero mean,
E(rl[l]) = 0, has constant variance, var(rk) = σ2

and is uncorrelated from one sweep to another,
E(rl[l]rk[l − m]) = ρr[m]δ(l − m) the estimator is
unbiased and decrease the variance of the noise.
More details on extracting 40-Hz ASSR cycles can
be found in [7], [8].

C. Algorithm

After ASSR cycles were extracted, principal com-
ponent analysis (PCA) is used to extract the
dominant features. PCA projects data from a d-
dimensional space on to a k-dimensional space,
where k < d such that the samples have the highest
possible variance after being projected on W [14].

y = WTx

Here x is the array of samples in d-dimensional
space and y is the extracted features in the k-
dimensional space, where k < d. W is the matrix
of the first k eigenvectors of S = cov(X), sorted
according to the size of eigenvalues. Knowing that
the the average of eigenvalues is equal to the average
variance of the signal,

∑

i

λi =
∑

i

si

where si is the ith element of the covariance matrix,
the number of projected features can be chosen
such that the desired portion of the data variance
preserves. The percentage of the variance preserved
by the k principle components as defined in equa-
tion 2 [15].

λ1 + λ2 + λ3 + · · ·+ λk

λ1 + λ2 + λ3 + · · ·+ λk + · · ·+ λd

× 100. (2)
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It is assumed for clustering that the data has
Gaussian mixture density. A mixture density is
modeled as

p(y) =

c∑

i=1

p(y|Gi)P (Gi) (3)

where c is the number of components Gi in the
mixture, p(y|Gi) is the component density and P (Gi)
is the mixture proportion. Since the components
are multivariate Gaussian the components’ densi-
ties are N (µi,Σi) and Φ = {P (Gi), µi,Σi}ci=1 are the
parameters to be estimated. In clustering with EM
each Gaussian component corresponds to a class
and we look for the component density parameters
that maximize likelihood of the samples.

L(Φ|Y ) = log
∏

t

p(yt|Φ)

=
∑

t

log
c∑

i=1

p(yt|Gi)P (Gi) (4)

The equation (Eq. 4) is not analytically solvable; EM
algorithm [16], [17] is used to iteratively maximize
likelihood. In the EM algorithm a hidden variable z
is defined and the likelihood of the joint distribution
of y and z, L(Φ|y, z), is maximized. Since z is not
observed the expectation of likelihood is calculated.
In each iteration on the expectation phase samples
are clustered assuming the mixture model Φl and
expected likelihood are calculated. On the maxi-
mization phase Φl+1 will be calculated such that it
maximize the expectation. Φl+1 will be used at the
next iteration for clustering the samples (expecta-
tion phase).

Q(Φ|Φl) = E[L(Φ|Y, Z)|Y,Φl]

Φl+1 = argmax
Φ

Q(Φ|Φl)

Is it proven that increasing the likelihood of joint
distribution L(Φ|Y, Z) will increase likelihood of dis-
tribution of Y L(Φ|Y ) too [16], [15].
Assuming that the features can be modeled with
Gaussian Mixture Model, at the fist clustering level
the signals have been clustered into 2 main Gaus-
sian components that splits data into conscious (C
cluster) and anaesthetized (A cluster). On the next
level C clustered data will be clustered into 5 and A
clustered data into 10 clusters.
Once the samples are clustered in two levels data
labels and the posterior probability of each sample
will be used for defining the depth of anaesthesia
index IDoA. The clusters will be sorted and labeled
according to the euclidian distance of their mean
value from each other after clustering. The ones with
closer mean values will be labeled with consecutive
numbers as labels. These labels are filtered with a
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Fig. 1: Clustered data after first level clustering of
C4 − A1A2 channel of subject 3 ASSR with three
dimensional data points.

moving average filter where the filter coefficients are
the product of a neighboring factor and the cluster-
ing posterior probability of samples to compute the
DoA index.

I = L× ωT (5)

L = [lt−n · · · lt · · · lt+n]

ω = [(1/2)|−n|p(yt−n|Gt−n) · · · p(yt|Gt) · · ·

(1/2)|n|p(yt+n|Gt+n)] (6)

Here n is the number of neighbor samples on each
side, L is the vector of labels. n is chosen as 4 and L
varies between 1 to 15. Finally the index I is scaled
to 0 < IDoA < 100 .

III. Results

The multi-clustering algorithm is applied to the
recorded 40-Hz ASSR signals. PCA is applied to data
samples to extract the first k features that contain
75% of data energy. k varies between 2 and 6 in
different channels and for different subjects. On the
first level clustering EM is done with 500 iterations.
The algorithm is repeated 10 times, each time with
a new set of random initial component parameters
and the one with largest likelihood is chosen. The
fist level of clustering divides the data into conscious
(C cluster) and anesthetized (A cluster) cycles. Fig-
ure 1 shows the clustered data for an ASSR signal
in which the dimension number is reduced to 3.

Figures 2 and 3 show how the cycles are labeled
in time relative to the clinical markers in two sub-
jects in channel T3 − Fz and C4 − A1A2 respectively.
The markers are times of the injection of Fentanyl,
Propofol and loosing eyelash reflex on the induction
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Fig. 2: First level clustering labels for C4−A1A2 chan-
nel of subject 3 ASSR. The labels are presented on
each cycle time. The clinical markers are presented
with vertical lines.
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Fig. 3: First level clustering labels for T3−Fz channel
of subject 10 ASSR. The labels are presented on
each cycle time. The clinical markers are presented
with vertical lines.

side and time of opening eyes and, obeying com-
mand on the emerging side. The patient is fully
anaesthetized once his/her eye lash reflex disap-
pears. Emerging from anaesthesia, patients usually
open their eyes first but they will not be considered
fully conscious before being able to obey commands.
It can be seen in figures 2 and 3 that most of
the cycles are labeled as ‘A’ after the eyelash reflex
marker, and most of the cycles are labeled as ‘C’
after obeying command. In both signals there is a
small gap after opening the eyes when data is not
recorded while the patients were transferred from
the operation room to the recovery room. Subject
10 opened his eyes at the same time he obeyed the
commands.

On the second level of clustering the ‘C’ clustered
data samples are clustered to 5 clusters and the
‘A’ clustered data samples into 10. Similar to the
first level, clustering is done in 500 iterations and
10 repetitions with random initial component pa-
rameters. Figures 4 and 5 show the DoA index on
T3 − Fz channel of subject 3 and C4 −A1A2 channel
of subject 10 together with the BIS and MAC values
recorded at the same time. In each figure the top
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Fig. 4: DoA index for subject 3 on C4−A1A2 channel
over the time. Top plot shows MAC values. On the
bottom plot the green line with diamonds is the BIS
index, the cyan solid line is the IDoA and the blue
dots are the smoothed IDoA. The clinical markers
are presented with vertical lines.

plot shows MAC variations. On the bottom plots the
solid cyan lines are the DoA index values and the
blue dots are the smoothed DoA index. It can be
seen that the MAC, BIS and DoA index variations
are consistent in time. The patients have the lowest
DoA index while MAC is at its highest values. The
index is above 60 when the patient is conscious and
starts decreasing after the injection of anaesthetic
agents. The index is below 50 when patients are on
the surgical level of anaesthesia. On the emergence
from anaesthesia the index rises back to above 50.
In figure 5 some of BIS values are missed (between
seconds 1000th and 1500th) that is because the noise
level from other equipments in the room was very
high during those seconds and the BIS monitor
could not evaluate the index.

IV. Conclusion

An unsupervised method for defining depth of
anaesthesia index is proposed in this paper. The
algorithm defines the DoA index based on clustering
information of 40-ASSR signals. DoA index varies
between 100 and 0, where 100 shows full conscious-
ness and 0 shows no brain activity.
The defined index variations is consistent with the
control values namely MAC and BIS. DoA index will
help anaesthesiologist to monitor different depths of
anaesthesia more closely and is a big step towards
automation of anaesthesia monitoring.
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Fig. 5: DoA index for subject 10 on T3 − Fz channel
over the time. Top plot shows MAC values. On the
bottom plot the green line with diamonds is the BIS
index, the cyan solid line is the IDoA index and the
blue dots are the smoothed IDoA index. The clinical
markers are presented with vertical lines.
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