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Abstract-Using multiple features in appearance modeling has 

shown to be effective for visual tracking. In this paper, we 

dynamically measured the importance of different features and 

proposed a robust tracker with the weighted features. By doing 

this, the dictionaries are improved in both reconstructive and 

discriminative way. We extracted multiple features of the target, 

and obtained multiple sparse representations, which plays an 

essential role in the classification issue. After learning 

independent dictionaries for each feature, we then implement 

weights to each feature dynamically, with which we select the 

best candidate by a weighted joint decision measure. 

Experiments have shown that our method outperforms several 

recently proposed trackers. 

Keywords-visual tracking, feature weighting, sparse coding, 

dictionary learning. 

I.  INTRODUCTION 

Challenges in visual tracking, such as occlusions, cluttered 
backgrounds, and pose variance have always limited the 
performance of trackers. Plenty of methods have been 
proposed to deal with various situations aiming at appearance 
modeling. And recently, more and more methods are using 
sparse representation due to its capability of capturing the most 
essential information from training sets and its robustness to 
noise [1, 2, 3, 7, 8, 9, 10]. Due to these advantages, methods 
using multiple features or multiple dictionaries to sparsely 
represent the target have been proposed [4, 5]. And in [4], 
using multiple dictionaries enhances the method’s robustness 
against noise since it can more promisingly maintain the 
essential information. However, existing approaches using 
multiple features have drawbacks. First, previous methods 
treated each feature fairly and ignored the fact that different 
features have different importance [5]. Feature weighting is a 
crucial problem since if we treat features with different 
importance as the same, the target would not be represented 
well and thus the performance of the approach would be 
limited. Second, existing methods treated relationships between 
features statically. Situations in different frames can be 
significantly various, thus the weights of features should be 
dynamically updated to avoid noise pollution. 

In this work, we focus on measuring the importance of 
different features dynamically in multi-feature dictionary 
learning. Inspired by the online discriminative dictionary 
learning [2], we develop a novel feature weighting scheme in 

multiple dictionary learning (FWMDL) for visual tracking 
which exploits both the reconstructive and discriminative 
capability of dictionaries. Inspired by [16], to strengthen the 
capability of the representation of the learned dictionaries, a 
specific class label is associated with each dictionary item 
instead of using only the reconstruction error as in [1, 7, 9, 10], 
which means that the algorithm learns sparse dictionaries and 
linear classifiers at the same time. To select the target from the 
candidates, we linearly combine the weighted joint decision 
measure, which is based on a combination of a quadratic 
appearance distance and classification error. Motivated by [2], 
to deal with appearance changes, we update the dictionaries 
and classifiers dynamically with the new samples. 

Our contributions are as follows: 

First, we propose a novel dictionary learning algorithm in 
which multiple dictionaries are optimally learned and updated 
for the sparse representation of the tracked targets with 
multiple features. By simultaneously learning multiple 
dictionaries with multiple features, the proposed tracker 
achieves more accurate representation and lower tracking error. 

Second, we introduce a novel feature weighting scheme 
based on multiple dictionary learning for feature fusion. 
Dynamically weighting different features enables different 
features to play different role in appearance modeling based on 
their capabilities of describing the tracked target. 

Third, the proposed method achieves superior performance 
and outperforms several state-of-the-art algorithms. 

II. PROPOSED METHOD 

A. Tracking Algorithm 

Our goal is to model the tracked target accurately and 
robustly with a set of training samples given 𝑋 =
{𝑋1, 𝑋2, … , 𝑋𝑁} ∈ ℝd×N×K . To construct template sets with 
multiple features, 𝐾  features are extracted from the samples 
and there are in total 𝑁  background and target templates in 
each feature. We assign each template with a class label from 
𝑌 = {1, −1} . Each 𝑋𝑛  is a matrix of 𝑑 × 𝐾  dimension, 
extracted from an image region corresponding to a positive 
sample(target) or negative sample(background). In our case, 
for the 𝐾  columns of each 𝑋𝑛 , we learn 𝐾  dictionaries 
separately, and each dictionary is corresponding to one feature. 

In the situation of sparse coding, inspired by [1], each 𝑥𝑛
𝑘  is 
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sparsely represented by its relative dictionary, 𝑥𝑛
𝑘 ≈ 𝐷𝑘𝑐𝑛

𝑘 , 

where 𝑐𝑛
𝑘 is the sparse code of 𝑥𝑛

𝑘 and is defined by: 

          𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1                 (1) 

where the parameter 𝜆1  balances the sparsity and the 
reconstruction error. In this case, the dictionaries should be not 
only generative, but discriminative as well. Therefore, 

motivated by [2], the sparse code, 𝑐𝑛
𝑘 , is used as the feature 

descriptor thus could be used to learn the dictionary and the 
classifier: 

             min𝐷𝑘,𝑊𝑘
∑ 𝑙(𝑦𝑛

𝑘 , 𝑓(𝑐𝑛
𝑘, 𝑊𝑘)) + 𝜆2‖𝑊𝑘‖𝐹

2
𝑛                 (2) 

where 𝑙 is the loss function, 𝜆2 serves as a trade-off parameter, 

and 𝑦𝑛
𝑘  is the label vector for 𝑥𝑛

𝑘 , of which the non-zero 

position suggests the class label of 𝑥𝑛
𝑘 . 𝑓  here is a linear 

classifier with classification parameters 𝑊𝑘 represented by: 

                                 𝑓(𝑐𝑛
𝑘, 𝑊𝑘) = 𝑊𝑘𝑐𝑛

𝑘                                  (3) 

We aim to make the learned dictionaries good for classification, 

and samples from the 𝑚𝑡ℎ  class will be represented by the 

dictionary items from the 𝑚𝑡ℎ  class. Moreover, we take into 
account the sparse coding error and a linear regression loss for 
the equation so that the 𝑙 above can be formulated by: 

𝑙(𝐷𝑘, 𝑊𝑘; 𝑥𝑛
𝑘, 𝑦𝑛

𝑘, 𝑙𝑛
𝑘) = (1 − 𝜇)‖𝑦𝑛

𝑘 − 𝑊𝑘𝑐𝑛
𝑘‖2

2 +
𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2                                                                              (4) 

where 𝑙𝑛
𝑘 = [1, … ,0,1,0, … ,0] is an ideal sparse code for  𝑥𝑛

𝑘.  

    Thus, the learning framework is as follow: 

min
𝐷,𝑊

∑ ∑(1 − 𝜇)‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2
2 + 𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2

𝑁

𝑛=1

𝐾

𝑘=1
+ 𝜆2‖𝑊𝑘‖𝐹

2  

      𝑠. 𝑡. 𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1               (5) 

where the variable 𝜇  controls the contribution of the sparse 
code error and the linear regression error. 

    The learned dictionaries are both reconstructive and 
discriminative due to the label information and the 
classification error during the optimization. 

After the dictionaries are learned, we are able to classify the 
test samples. However, the way to use the dictionaries should 
be connected to the different characteristics of each feature. 
That is to say, the dictionaries should be combined by an 
approach that would take into account their respective 
importance. In our method, we use the capability of describing 
the target of each dictionary to measure the importance, and 
use a weighted joint decision measure to score each sample. 
The formulation is as follow: 

             𝜑𝑘(𝑥) = ‖𝑥𝑡𝑟
𝑘 − 𝐷𝑘𝑐𝑛

𝑘‖
2

+ 𝜔𝑘‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2         (6) 

where 𝑥𝑡𝑟
𝑘  is the weighted average of the 𝑘𝑡ℎ  feature of the 

tracking results. We add the weight in the classification error 
because the importance of the classification error should not be 
static, and should be updated dynamically. If the capability of 
describing the target of a feature is good enough, then the 
weight of the classification error should be big and vice versa. 

    In order to obtain the reconstruction error ‖𝑥𝑡𝑟
𝑘 − 𝐷𝑘𝑐𝑛

𝑘‖
2
, 

we accumulate each feature extracted from the bounding box 
separately at the optimal location into a set 𝑇𝑘 . We add the 
optimal locations computed by the tracking algorithm to 𝑇𝑘 and 
delete those from older frames from 𝑇𝑘 , and 𝑇𝑘  has fixed 

number of elements, denoted as U. We compute the 𝑥𝑡𝑟
𝑘  above 

by weighted average of the elements in 𝑇𝑘, where the weight of 

each element in 𝑇𝑘 can be computed by 𝑒ℰ, where ℰ is the joint 
decision error. While initialization, the weight of  𝑇𝑘 is set to 1, 
and it only has one element-the ground truth. 

Combining all the dictionaries, we add the weighted decision 
scores together: 

      𝜙(𝑠) = ∑ 𝜑𝑘(𝑠)𝐾
𝑘=1                               (7) 

The weight of each joint decision error in the 𝐾 features is 
measured by the capability of describing the target. Thus, in 
our method, we compute the weight using the quadratic 
appearance distance of each dictionary. Thus the formulation is 
defined as: 

          𝜔𝑘 = 𝜌(1 −
‖𝑥𝑡𝑟

𝑘 −𝐷𝑘𝑐𝑛
𝑘‖

2

∑ ‖𝑥𝑡𝑟
𝑘 −𝐷𝑘𝑐𝑛

𝑘‖
2𝐾

𝑘=1

) × (𝐾 − 1)−1              (8) 

where 𝜌 is a constant and controls the contribution of the 
weight. 

Taking the weight of each dictionary into account, the 
tracker is more adaptive to different situations and challenges, 
and thus the robustness is enhanced. 

B. Optimization 

Although the dictionaries are learned separately, the 
learning procedures for each dictionary are the same. Thus we 
only consider one global optimization procedure. The objective 
function is as follow: 

Γ𝑘 = ∑(1 − 𝜇)‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2
2 + 𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2

𝑁

𝑛=1

+ 𝜆2‖𝑊𝑘‖𝐹
2   

𝑠. 𝑡. 𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1           (9) 

    However, the function above is nonlinear and nonconvex, 
thus we adopt the stochastic gradient descent in [3]. We 
compute the gradient with respect to 𝑊𝑘 by: 

𝜕Γ𝑘

𝜕𝑊𝑘
= (1 − 𝜇)(𝑊𝑘𝑐𝑛

𝑘 − 𝑦𝑛
𝑘)(𝑐𝑛

𝑘)𝑇 + 𝜆2𝑊𝑘           (10) 

However, the dictionary 𝐷𝑘  is implicitly defined on the 

sparse code 𝑐𝑛
𝑘 instead of explicitly defined in Γ𝑘. In order to 

obtain the gradient with respect to 𝐷𝑘 , we use the implicit 
differentiation algorithm on the fixed point equations as in [3, 
15]. Therefore, we obtain the chain rule: 

          
𝜕Γ𝑘

𝜕𝐷𝑘
=

𝜕Γ𝑘

𝜕𝑐𝑛
𝑘

𝜕𝑐𝑛
𝑘

𝜕𝐷𝑘
                                  (11) 

where 
𝜕Γ𝑘

𝜕𝑐𝑛
𝑘 = (1 − 𝜇)(𝑊𝑘)𝑇(𝑊𝑘𝑐𝑛

𝑘 − 𝑦𝑛
𝑘) + 𝜇(𝑐𝑛

𝑘 − 𝑙𝑛
𝑘) . In 

order to obtain 
𝜕𝑐𝑛

𝑘

𝜕𝐷𝑘
, we define the fixed point equation 

(𝐷𝑘)𝑇(𝐷𝑘𝑐𝑛
𝑘 − 𝑥𝑘) = −𝜆𝑠𝑖𝑔𝑛(𝑐𝑛

𝑘)  where we apply the sign 

function to the elements of 𝑐𝑛
𝑘  individually. Afterwards, we 
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calculate 
𝜕𝑐𝑛

𝑘
∆

𝜕𝑊𝑘∆

= (𝐷𝑘∆
𝑇𝐷𝑘∆

)
−1

(
𝜕D𝑘∆

𝑇𝑥𝑘

𝜕𝐷𝑘∆

−
𝜕D𝑘∆

𝑇𝐷𝑘∆

𝜕𝐷𝑘∆

𝑐𝑛
𝑘), where ∆ 

and ∆̅ are the indices of all non-zero and zeros values. Then we 
have: 

𝜕Γ𝑘

𝜕𝐷𝑘
= −𝐷𝑘𝜉𝑘(𝑐𝑛

𝑘)𝑇 + (𝑥𝑛
𝑘 − 𝐷𝑘𝑐𝑛

𝑘)(𝜉𝑘)𝑇             (12) 

where 𝜉𝑘 ∈ ℝ𝐿 and 𝜉𝑘∆̅
= 0, 𝜉𝑘∆

=
𝜕Γ𝑘

𝜕𝑐𝑛
𝑘 (𝐷𝑘∆

𝑇𝐷𝑘∆
)

−1
. 

After doing this, we obtained the gradients with respect to 
𝑊𝑘 and 𝐷𝑘. We use the learning rate 𝑚𝑖𝑛(𝜂, 𝜂𝑖0/𝑖) adopted in 
[3], where 𝜂  is a constant, and 𝑖0 = 𝑀/10 , where 𝑀  is the 
iteration number. More details are in Algorithm 1. 

Algorithm1  

Input: Training set 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁} ∈ ℝd×N×K with labels 
𝑌, 𝜆1, 𝜆2, 𝜇, 𝜂, 𝑊1, 𝐷1 

for m = 1 to 𝑀 

 for k = 1 to 𝐾 

     Obtain training sample 𝑋; 

     for n = 1 to 𝑁 

         Derive 𝑦𝑛
𝑘 from 𝑥𝑛

𝑘; 

         Calculate sparse code 𝑐𝑛
𝑘  according to Equation         

         (1); 

         Calculate the active set ∆𝑛 and compute 𝜉𝑘    
         through Equation (12); 

         Get the learning rate 𝑚𝑖𝑛(𝜂, 𝜂𝑖0/𝑖); 

         Compute the gradients with respect to 𝑊𝑘
𝑚 and     

         𝐷𝑘
𝑚 through Equation (10) and (12); 

         Update 𝑊𝑘
𝑚 and 𝐷𝑘

𝑚 using 

         𝑊𝑘
𝑚 = 𝑊𝑘

𝑚 − 𝜂𝑚
𝜕Γ𝑘

𝑛

𝜕𝐷𝑘
𝑚 and 

         𝐷𝑘
𝑚 = 𝐷𝑘

𝑚 − 𝜂𝑚
𝜕Γ𝑘

𝑛

𝜕𝑊𝑘
𝑚 

     end for 

 𝑊𝑘
𝑚+1 = 𝑊𝑘

𝑚, and 𝐷𝑘
𝑚+1 = 𝐷𝑘

𝑚; 

 end for 

        𝑊𝑚+1 = {𝑊𝑘
𝑚+1}𝑘=1

𝐾 , and 𝐷𝑚+1 = {𝐷𝑘
𝑚+1}𝑘=1

𝐾 ; 

end for 

Output: New W and D; 

 

C. Initialization 

In the first frame, we use the K-SVD [6] on samples we 
obtained, both negative and positive, and they share the same 
size. And we combine the sampled items to form the initialized 
dictionaries 𝐷0 = {𝐷1

0, 𝐷2
0, … , 𝐷𝐾

0} . Then we calculate the 

sparse code for 𝑥𝑛
𝑘 to form the matrix 𝐶𝑘, which contains all the 

sparse codes of samples of the 𝑘𝑡ℎ feature. And we apply the 

ridge regression model to initialize 𝑊0 = {𝑊1
0, 𝑊2

0, … , 𝑊𝐾
0}: 

𝑊𝑘
0 = 𝑎𝑟𝑔 min𝑊𝑘

0‖𝑌𝑘 − 𝑊𝑘
0𝐶𝑘‖2 + 𝜆3‖𝑊𝑘

0‖2 , where 𝑌𝑘  is 

the label matrix for the samples of 𝑘𝑡ℎ  feature. And this 

equation can be computed by: 𝑊𝑘
0 = 𝑌𝑘(𝐶𝑘)𝑇(𝐶𝑘(𝐶𝑘)𝑇 +

𝜆3𝐼)−1, where 𝐼 represents the identity matrix. 

III. IMPLEMENTATION DETAILS 

A. Tracking Procedure 

We are given a ground-truth bounding box 𝑏1 =
(𝑥1, 𝑦1, 𝑠1) in the first frame, where the (𝑥1, 𝑦1) is the central 
point and 𝑠1  is the scale. To obtain items in the initial 
dictionaries, we randomly shift the bounding box near and far 
away from the central point to get the positive and the negative 
samples, without overlap. Afterwards, we initialize the 𝐷0 and 
𝑊0  as discussed above. The tracking result is obtained by 
referring the location of target in current frame via previous 
information. We sample around the previous frame 𝑏𝑡−1 
through a Gaussian distribution 𝑝(𝑏𝑡|𝑏𝑡−1), and among all the 
candidates, we use the weighted joint decision measure 
mentioned above to select the target. 

B. Update 

We update the dictionary and the classifier periodically. In 
each frame, we sample the positive items near the bounding 
box, and negative ones far away from the bounding box. We 
control the distance from the decided next bounding box to 
make sure that most negative samples are pure background 
information so that they differentiate the target to the most 
extent. We add these samples to a set, 𝑆, and if the size of 𝑆 
reaches a threshold V, we update the dictionaries and empty 𝑆. 

While the elements in set  𝑇𝑘 𝑎𝑛𝑑 𝑆 are accumulated, the 
result of the tracker could contain significant noise so that it is 
not reliable if the reconstruction error or the classification error 
is bigger than a pre-defined threshold. In this case, we will skip 
this frame to avoid updating with potentially noisy sample. See 
Algorithm 2 for details. 

Algorithm2 

Input: Frame sequences 𝐼1, 𝐼2, … , 𝐼𝑡. 

Initialization 𝐼1 

 Given the ground-truth 𝑏1 = (𝑥1, 𝑦1, 𝑠1), 𝑁+ positive 
 samples and 𝑁− negative samples are obtained; 

 Extract multiple features from samples with label 
 information 𝑌; 

 Initialize 𝐷0 and 𝑊0; 

 Add all the K features into set 𝑆, and add the  initial 

state 𝑏1 into set {𝑇𝑘}𝑘=1
𝐾 ; 

Tracking Procedure: 

 Sample Z candidates according to Gaussian 
 distribution around the target in the last frame; 

 Extract K features from each candidate and calculate 
 the sparse codes; 

 For each candidate, use the proposed weighting 
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 method to compute joint decision measure error; 

 Select the candidate with the smallest joint decision 
 measure error 𝜙 as the target result 𝑏𝑡; 

 Sample 𝑁+  positive samples and 𝑁−  negative 
 samples near and far away from the result, and obtain 
 new samples 𝑋𝑛𝑒𝑤. 

 Add K features of tracking result 𝑏𝑡 into {𝑇𝑘}𝑘=1
𝐾  and 

 add 𝑋𝑛𝑒𝑤 into set 𝑆; 

 Remove the oldest items from 𝑇𝑘 if the size of 𝑇𝑘 is 
 bigger than U; 

 If the size of set 𝑆 is equal to V, update D and W, and 
 then empty 𝑆. 

Output: Tracking results for each frame sequence 
𝑏1, 𝑏2, … , 𝑏𝑡.  

 

IV. EXPERIMENTS 

A. Experiment Setting 

We use two features, LBP [12] feature and HOG [11] 

feature, to generate the dictionaries, thus the 𝐾  in the 

experiments is set to 2. The proposed tracker is evaluated in 

ten videos which cover different kinds of challenging factors, 

such as illumination, fast motion, scale changes, cluttered 

background, and occlusion. To further demonstrate its 

effectiveness, other five state-of-the-art tracking algorithms 

are also run for comparison including the L1 method [1], the 

MTT method [7], the DFT method [13], the IVT method [14], 

and the ODDL method [2]. The source codes of these 

compared methods are provided by the authors.  

The widely accepted metric, center location error is adopted 

for evaluation. The center location error is defined as the 

Euclidean distance between centers of the bounding box and 

the ground truth. For fair comparison, all trackers are set to be 

with the same initialization parameters. 

B. Results 

Without considering the time for dictionary learning, the 

time used for object tracking for each frame is about 0.39 

second. Table I records the video-by-video comparison results 

in term of center location error. The best three results are 

shown in red, green and blue. We can see that the proposed 

tracker outperforms other sparse representation-based trackers 

and achieves the least error in overall comparison, which 

shows that the feature fusion scheme facilitate the tracking 

performance. Moreover, by using the proposed feature 

weighting scheme, the proposed tracker achieve a better 

performance than ODDL. 

Figure 1 demonstrates frame-by-frame comparison in terms 

of center location error. We can see that even under large 

illumination (e.g. Car4, Shaking), fast motion (e.g. Jumping), 

occlusion (e.g. Faceocc, Faceocc2), or cluttered background 

(e.g. Football), the proposed tracker achieves a much more 

stable performance and maintain lower tracking error, which 

illustrates the effectiveness of the proposed feature weighting 

scheme to appearance variations and background change. 

Figure 2 shows the tracking result we get from ten 

challenging sequences comparing with other five state-of-the-

art algorithms. We can see that our method performs stable 

and robust in various situations since it never lost the target in 

all sequences. 

TABLE I.  VIDEO-BY-VIDEO COMPARISON IN TERMS OF 

CENTER LOCATION ERROR (MEASURED IN PIXELS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence L1 IVT MTT DFT ODDL OURS 

Car4 137.8 1.9 126.6 61.9 6.2 7.7 

Coke11 51.7 57.4 13.9 32.2 11.5 5.9 

Faceocc2 14.4 7.2 13.2 10 11.8 15.2 

Football 45 8.3 9.5 30.8 12.6 5.9 

Girl 113.8 62 26.2 35.2 15.7 17.1 

Jumping 4.2 4.3 85.8 60.5 5.6 5.5 

Shaking 110.9 97.7 94.4 8.9 118.9 11.2 

Singer1 155.4 12.2 12.1 26.7 39.6 26.9 

Walking 8.7 3.7 5.9 282.8 9 7.9 

Faceocc 18.8 19.7 22.6 13.6 24.6 24.8 

Average 66.07 27.44 41.02 56.26 25.55 12.81 
 

 
(a) Football 

 
(b)Shaking 

 
(c)Car4 
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V. CONCLUSION 

In this paper, we developed a novel feature weighting 

scheme in multiple dictionary learning and proposed a robust 

visual tracker. We measured the contribution of each feature 

in each frame to adaptively and progressively update the 

weight of the dictionaries. We extract multiple features from 

each sample and then calculate the sparse codes for all the 

extracted features. By using the sparse codes we obtained, we 

can learn dictionaries and classifiers more effectively. And 

after the dictionaries are learned, we weight the classification 

error of each feature basing on the capability of describing the 

target of each feature. By using the weighted classification 

error, we combine it with the quadratic appearance distance to 

serve as a joint decision measure error, and select the target 

from the candidates according to the error. The weighting 

procedure takes into account the characteristics of each feature 

at different time, thus enhanced the adaptiveness of the 

dictionaries, and has improved the tracking performance in 

both reconstructive and discriminative way. Experiment 

results have shown that the proposed method achieves 

superior performance comparing to state-of-the-art methods. 
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(d) Jumping 

 
Fig.1 Frame-by-frame comparison in terms of Center 

Location Error (Measured in pixels). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig.2 Some of the tracking results of the proposed method and 

the compared methods on ten challenging sequences (from up 

to down are Car4, Coke11, Faceocc2, Football, Girl, and 

Shaking). 
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