
Robust Visual Tracking Using Dynamic Feature

Weighting Based on Multiple Dictionary Learning

 Renfei Liu
1,2

, Xiangyuan Lan
1
, Pong C Yuen

1,*
, G C Feng

2

1
Department of Computer Science, Hong Kong Baptist University, Hong Kong

2
School of Mathematics and Computational Science, Sun Yat-sen University, P.R. China

{renfeiliu, xylan, pcyuen}@comp.hkbu.edu.hk, mcsfgc@mail.sysu.edu.cn

Abstract-Using multiple features in appearance modeling has

shown to be effective for visual tracking. In this paper, we

dynamically measured the importance of different features and

proposed a robust tracker with the weighted features. By doing

this, the dictionaries are improved in both reconstructive and

discriminative way. We extracted multiple features of the target,

and obtained multiple sparse representations, which plays an

essential role in the classification issue. After learning

independent dictionaries for each feature, we then implement

weights to each feature dynamically, with which we select the

best candidate by a weighted joint decision measure.

Experiments have shown that our method outperforms several

recently proposed trackers.

Keywords-visual tracking, feature weighting, sparse coding,

dictionary learning.

I. INTRODUCTION

Challenges in visual tracking, such as occlusions, cluttered
backgrounds, and pose variance have always limited the
performance of trackers. Plenty of methods have been
proposed to deal with various situations aiming at appearance
modeling. And recently, more and more methods are using
sparse representation due to its capability of capturing the most
essential information from training sets and its robustness to
noise [1, 2, 3, 7, 8, 9, 10]. Due to these advantages, methods
using multiple features or multiple dictionaries to sparsely
represent the target have been proposed [4, 5]. And in [4],
using multiple dictionaries enhances the method’s robustness
against noise since it can more promisingly maintain the
essential information. However, existing approaches using
multiple features have drawbacks. First, previous methods
treated each feature fairly and ignored the fact that different
features have different importance [5]. Feature weighting is a
crucial problem since if we treat features with different
importance as the same, the target would not be represented
well and thus the performance of the approach would be
limited. Second, existing methods treated relationships between
features statically. Situations in different frames can be
significantly various, thus the weights of features should be
dynamically updated to avoid noise pollution.

In this work, we focus on measuring the importance of
different features dynamically in multi-feature dictionary
learning. Inspired by the online discriminative dictionary
learning [2], we develop a novel feature weighting scheme in

multiple dictionary learning (FWMDL) for visual tracking
which exploits both the reconstructive and discriminative
capability of dictionaries. Inspired by [16], to strengthen the
capability of the representation of the learned dictionaries, a
specific class label is associated with each dictionary item
instead of using only the reconstruction error as in [1, 7, 9, 10],
which means that the algorithm learns sparse dictionaries and
linear classifiers at the same time. To select the target from the
candidates, we linearly combine the weighted joint decision
measure, which is based on a combination of a quadratic
appearance distance and classification error. Motivated by [2],
to deal with appearance changes, we update the dictionaries
and classifiers dynamically with the new samples.

Our contributions are as follows:

First, we propose a novel dictionary learning algorithm in
which multiple dictionaries are optimally learned and updated
for the sparse representation of the tracked targets with
multiple features. By simultaneously learning multiple
dictionaries with multiple features, the proposed tracker
achieves more accurate representation and lower tracking error.

Second, we introduce a novel feature weighting scheme
based on multiple dictionary learning for feature fusion.
Dynamically weighting different features enables different
features to play different role in appearance modeling based on
their capabilities of describing the tracked target.

Third, the proposed method achieves superior performance
and outperforms several state-of-the-art algorithms.

II. PROPOSED METHOD

A. Tracking Algorithm

Our goal is to model the tracked target accurately and
robustly with a set of training samples given 𝑋 =
{𝑋1, 𝑋2, … , 𝑋𝑁} ∈ ℝd×N×K . To construct template sets with
multiple features, 𝐾 features are extracted from the samples
and there are in total 𝑁 background and target templates in
each feature. We assign each template with a class label from
𝑌 = {1, −1} . Each 𝑋𝑛 is a matrix of 𝑑 × 𝐾 dimension,
extracted from an image region corresponding to a positive
sample(target) or negative sample(background). In our case,
for the 𝐾 columns of each 𝑋𝑛 , we learn 𝐾 dictionaries
separately, and each dictionary is corresponding to one feature.

In the situation of sparse coding, inspired by [1], each 𝑥𝑛
𝑘 is

*Corresponding author

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 2166

sparsely represented by its relative dictionary, 𝑥𝑛
𝑘 ≈ 𝐷𝑘𝑐𝑛

𝑘 ,

where 𝑐𝑛
𝑘 is the sparse code of 𝑥𝑛

𝑘 and is defined by:

 𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1 (1)

where the parameter 𝜆1 balances the sparsity and the
reconstruction error. In this case, the dictionaries should be not
only generative, but discriminative as well. Therefore,

motivated by [2], the sparse code, 𝑐𝑛
𝑘 , is used as the feature

descriptor thus could be used to learn the dictionary and the
classifier:

 min𝐷𝑘,𝑊𝑘
∑ 𝑙(𝑦𝑛

𝑘 , 𝑓(𝑐𝑛
𝑘, 𝑊𝑘)) + 𝜆2‖𝑊𝑘‖𝐹

2
𝑛 (2)

where 𝑙 is the loss function, 𝜆2 serves as a trade-off parameter,

and 𝑦𝑛
𝑘 is the label vector for 𝑥𝑛

𝑘 , of which the non-zero

position suggests the class label of 𝑥𝑛
𝑘 . 𝑓 here is a linear

classifier with classification parameters 𝑊𝑘 represented by:

 𝑓(𝑐𝑛
𝑘, 𝑊𝑘) = 𝑊𝑘𝑐𝑛

𝑘 (3)

We aim to make the learned dictionaries good for classification,

and samples from the 𝑚𝑡ℎ class will be represented by the

dictionary items from the 𝑚𝑡ℎ class. Moreover, we take into
account the sparse coding error and a linear regression loss for
the equation so that the 𝑙 above can be formulated by:

𝑙(𝐷𝑘, 𝑊𝑘; 𝑥𝑛
𝑘, 𝑦𝑛

𝑘, 𝑙𝑛
𝑘) = (1 − 𝜇)‖𝑦𝑛

𝑘 − 𝑊𝑘𝑐𝑛
𝑘‖2

2 +
𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2 (4)

where 𝑙𝑛
𝑘 = [1, … ,0,1,0, … ,0] is an ideal sparse code for 𝑥𝑛

𝑘.

 Thus, the learning framework is as follow:

min
𝐷,𝑊

∑ ∑(1 − 𝜇)‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2
2 + 𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2

𝑁

𝑛=1

𝐾

𝑘=1
+ 𝜆2‖𝑊𝑘‖𝐹

2

 𝑠. 𝑡. 𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1 (5)

where the variable 𝜇 controls the contribution of the sparse
code error and the linear regression error.

 The learned dictionaries are both reconstructive and
discriminative due to the label information and the
classification error during the optimization.

After the dictionaries are learned, we are able to classify the
test samples. However, the way to use the dictionaries should
be connected to the different characteristics of each feature.
That is to say, the dictionaries should be combined by an
approach that would take into account their respective
importance. In our method, we use the capability of describing
the target of each dictionary to measure the importance, and
use a weighted joint decision measure to score each sample.
The formulation is as follow:

 𝜑𝑘(𝑥) = ‖𝑥𝑡𝑟
𝑘 − 𝐷𝑘𝑐𝑛

𝑘‖
2

+ 𝜔𝑘‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2 (6)

where 𝑥𝑡𝑟
𝑘 is the weighted average of the 𝑘𝑡ℎ feature of the

tracking results. We add the weight in the classification error
because the importance of the classification error should not be
static, and should be updated dynamically. If the capability of
describing the target of a feature is good enough, then the
weight of the classification error should be big and vice versa.

 In order to obtain the reconstruction error ‖𝑥𝑡𝑟
𝑘 − 𝐷𝑘𝑐𝑛

𝑘‖
2
,

we accumulate each feature extracted from the bounding box
separately at the optimal location into a set 𝑇𝑘 . We add the
optimal locations computed by the tracking algorithm to 𝑇𝑘 and
delete those from older frames from 𝑇𝑘 , and 𝑇𝑘 has fixed

number of elements, denoted as U. We compute the 𝑥𝑡𝑟
𝑘 above

by weighted average of the elements in 𝑇𝑘, where the weight of

each element in 𝑇𝑘 can be computed by 𝑒ℰ, where ℰ is the joint
decision error. While initialization, the weight of 𝑇𝑘 is set to 1,
and it only has one element-the ground truth.

Combining all the dictionaries, we add the weighted decision
scores together:

 𝜙(𝑠) = ∑ 𝜑𝑘(𝑠)𝐾
𝑘=1 (7)

The weight of each joint decision error in the 𝐾 features is
measured by the capability of describing the target. Thus, in
our method, we compute the weight using the quadratic
appearance distance of each dictionary. Thus the formulation is
defined as:

 𝜔𝑘 = 𝜌(1 −
‖𝑥𝑡𝑟

𝑘 −𝐷𝑘𝑐𝑛
𝑘‖

2

∑ ‖𝑥𝑡𝑟
𝑘 −𝐷𝑘𝑐𝑛

𝑘‖
2𝐾

𝑘=1

) × (𝐾 − 1)−1 (8)

where 𝜌 is a constant and controls the contribution of the
weight.

Taking the weight of each dictionary into account, the
tracker is more adaptive to different situations and challenges,
and thus the robustness is enhanced.

B. Optimization

Although the dictionaries are learned separately, the
learning procedures for each dictionary are the same. Thus we
only consider one global optimization procedure. The objective
function is as follow:

Γ𝑘 = ∑(1 − 𝜇)‖𝑦𝑛
𝑘 − 𝑊𝑘𝑐𝑛

𝑘‖2
2 + 𝜇‖𝑙𝑛

𝑘 − 𝑐𝑛
𝑘‖2

2

𝑁

𝑛=1

+ 𝜆2‖𝑊𝑘‖𝐹
2

𝑠. 𝑡. 𝑐𝑛
𝑘 = 𝑎𝑟𝑔 min𝑐‖𝑥𝑛

𝑘 − 𝐷𝑘𝑐‖2 + 𝜆1‖𝑐‖1 (9)

 However, the function above is nonlinear and nonconvex,
thus we adopt the stochastic gradient descent in [3]. We
compute the gradient with respect to 𝑊𝑘 by:

𝜕Γ𝑘

𝜕𝑊𝑘
= (1 − 𝜇)(𝑊𝑘𝑐𝑛

𝑘 − 𝑦𝑛
𝑘)(𝑐𝑛

𝑘)𝑇 + 𝜆2𝑊𝑘 (10)

However, the dictionary 𝐷𝑘 is implicitly defined on the

sparse code 𝑐𝑛
𝑘 instead of explicitly defined in Γ𝑘. In order to

obtain the gradient with respect to 𝐷𝑘 , we use the implicit
differentiation algorithm on the fixed point equations as in [3,
15]. Therefore, we obtain the chain rule:

𝜕Γ𝑘

𝜕𝐷𝑘
=

𝜕Γ𝑘

𝜕𝑐𝑛
𝑘

𝜕𝑐𝑛
𝑘

𝜕𝐷𝑘
 (11)

where
𝜕Γ𝑘

𝜕𝑐𝑛
𝑘 = (1 − 𝜇)(𝑊𝑘)𝑇(𝑊𝑘𝑐𝑛

𝑘 − 𝑦𝑛
𝑘) + 𝜇(𝑐𝑛

𝑘 − 𝑙𝑛
𝑘) . In

order to obtain
𝜕𝑐𝑛

𝑘

𝜕𝐷𝑘
, we define the fixed point equation

(𝐷𝑘)𝑇(𝐷𝑘𝑐𝑛
𝑘 − 𝑥𝑘) = −𝜆𝑠𝑖𝑔𝑛(𝑐𝑛

𝑘) where we apply the sign

function to the elements of 𝑐𝑛
𝑘 individually. Afterwards, we

2016 24th European Signal Processing Conference (EUSIPCO)

2167

calculate
𝜕𝑐𝑛

𝑘
∆

𝜕𝑊𝑘∆

= (𝐷𝑘∆
𝑇𝐷𝑘∆

)
−1

(
𝜕D𝑘∆

𝑇𝑥𝑘

𝜕𝐷𝑘∆

−
𝜕D𝑘∆

𝑇𝐷𝑘∆

𝜕𝐷𝑘∆

𝑐𝑛
𝑘), where ∆

and ∆̅ are the indices of all non-zero and zeros values. Then we
have:

𝜕Γ𝑘

𝜕𝐷𝑘
= −𝐷𝑘𝜉𝑘(𝑐𝑛

𝑘)𝑇 + (𝑥𝑛
𝑘 − 𝐷𝑘𝑐𝑛

𝑘)(𝜉𝑘)𝑇 (12)

where 𝜉𝑘 ∈ ℝ𝐿 and 𝜉𝑘∆̅
= 0, 𝜉𝑘∆

=
𝜕Γ𝑘

𝜕𝑐𝑛
𝑘 (𝐷𝑘∆

𝑇𝐷𝑘∆
)

−1
.

After doing this, we obtained the gradients with respect to
𝑊𝑘 and 𝐷𝑘. We use the learning rate 𝑚𝑖𝑛(𝜂, 𝜂𝑖0/𝑖) adopted in
[3], where 𝜂 is a constant, and 𝑖0 = 𝑀/10 , where 𝑀 is the
iteration number. More details are in Algorithm 1.

Algorithm1

Input: Training set 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁} ∈ ℝd×N×K with labels
𝑌, 𝜆1, 𝜆2, 𝜇, 𝜂, 𝑊1, 𝐷1

for m = 1 to 𝑀

 for k = 1 to 𝐾

 Obtain training sample 𝑋;

 for n = 1 to 𝑁

 Derive 𝑦𝑛
𝑘 from 𝑥𝑛

𝑘;

 Calculate sparse code 𝑐𝑛
𝑘 according to Equation

 (1);

 Calculate the active set ∆𝑛 and compute 𝜉𝑘
 through Equation (12);

 Get the learning rate 𝑚𝑖𝑛(𝜂, 𝜂𝑖0/𝑖);

 Compute the gradients with respect to 𝑊𝑘
𝑚 and

 𝐷𝑘
𝑚 through Equation (10) and (12);

 Update 𝑊𝑘
𝑚 and 𝐷𝑘

𝑚 using

 𝑊𝑘
𝑚 = 𝑊𝑘

𝑚 − 𝜂𝑚
𝜕Γ𝑘

𝑛

𝜕𝐷𝑘
𝑚 and

 𝐷𝑘
𝑚 = 𝐷𝑘

𝑚 − 𝜂𝑚
𝜕Γ𝑘

𝑛

𝜕𝑊𝑘
𝑚

 end for

 𝑊𝑘
𝑚+1 = 𝑊𝑘

𝑚, and 𝐷𝑘
𝑚+1 = 𝐷𝑘

𝑚;

 end for

 𝑊𝑚+1 = {𝑊𝑘
𝑚+1}𝑘=1

𝐾 , and 𝐷𝑚+1 = {𝐷𝑘
𝑚+1}𝑘=1

𝐾 ;

end for

Output: New W and D;

C. Initialization

In the first frame, we use the K-SVD [6] on samples we
obtained, both negative and positive, and they share the same
size. And we combine the sampled items to form the initialized
dictionaries 𝐷0 = {𝐷1

0, 𝐷2
0, … , 𝐷𝐾

0} . Then we calculate the

sparse code for 𝑥𝑛
𝑘 to form the matrix 𝐶𝑘, which contains all the

sparse codes of samples of the 𝑘𝑡ℎ feature. And we apply the

ridge regression model to initialize 𝑊0 = {𝑊1
0, 𝑊2

0, … , 𝑊𝐾
0}:

𝑊𝑘
0 = 𝑎𝑟𝑔 min𝑊𝑘

0‖𝑌𝑘 − 𝑊𝑘
0𝐶𝑘‖2 + 𝜆3‖𝑊𝑘

0‖2 , where 𝑌𝑘 is

the label matrix for the samples of 𝑘𝑡ℎ feature. And this

equation can be computed by: 𝑊𝑘
0 = 𝑌𝑘(𝐶𝑘)𝑇(𝐶𝑘(𝐶𝑘)𝑇 +

𝜆3𝐼)−1, where 𝐼 represents the identity matrix.

III. IMPLEMENTATION DETAILS

A. Tracking Procedure

We are given a ground-truth bounding box 𝑏1 =
(𝑥1, 𝑦1, 𝑠1) in the first frame, where the (𝑥1, 𝑦1) is the central
point and 𝑠1 is the scale. To obtain items in the initial
dictionaries, we randomly shift the bounding box near and far
away from the central point to get the positive and the negative
samples, without overlap. Afterwards, we initialize the 𝐷0 and
𝑊0 as discussed above. The tracking result is obtained by
referring the location of target in current frame via previous
information. We sample around the previous frame 𝑏𝑡−1
through a Gaussian distribution 𝑝(𝑏𝑡|𝑏𝑡−1), and among all the
candidates, we use the weighted joint decision measure
mentioned above to select the target.

B. Update

We update the dictionary and the classifier periodically. In
each frame, we sample the positive items near the bounding
box, and negative ones far away from the bounding box. We
control the distance from the decided next bounding box to
make sure that most negative samples are pure background
information so that they differentiate the target to the most
extent. We add these samples to a set, 𝑆, and if the size of 𝑆
reaches a threshold V, we update the dictionaries and empty 𝑆.

While the elements in set 𝑇𝑘 𝑎𝑛𝑑 𝑆 are accumulated, the
result of the tracker could contain significant noise so that it is
not reliable if the reconstruction error or the classification error
is bigger than a pre-defined threshold. In this case, we will skip
this frame to avoid updating with potentially noisy sample. See
Algorithm 2 for details.

Algorithm2

Input: Frame sequences 𝐼1, 𝐼2, … , 𝐼𝑡.

Initialization 𝐼1

 Given the ground-truth 𝑏1 = (𝑥1, 𝑦1, 𝑠1), 𝑁+ positive
 samples and 𝑁− negative samples are obtained;

 Extract multiple features from samples with label
 information 𝑌;

 Initialize 𝐷0 and 𝑊0;

 Add all the K features into set 𝑆, and add the initial

state 𝑏1 into set {𝑇𝑘}𝑘=1
𝐾 ;

Tracking Procedure:

 Sample Z candidates according to Gaussian
 distribution around the target in the last frame;

 Extract K features from each candidate and calculate
 the sparse codes;

 For each candidate, use the proposed weighting

2016 24th European Signal Processing Conference (EUSIPCO)

2168

 method to compute joint decision measure error;

 Select the candidate with the smallest joint decision
 measure error 𝜙 as the target result 𝑏𝑡;

 Sample 𝑁+ positive samples and 𝑁− negative
 samples near and far away from the result, and obtain
 new samples 𝑋𝑛𝑒𝑤.

 Add K features of tracking result 𝑏𝑡 into {𝑇𝑘}𝑘=1
𝐾 and

 add 𝑋𝑛𝑒𝑤 into set 𝑆;

 Remove the oldest items from 𝑇𝑘 if the size of 𝑇𝑘 is
 bigger than U;

 If the size of set 𝑆 is equal to V, update D and W, and
 then empty 𝑆.

Output: Tracking results for each frame sequence
𝑏1, 𝑏2, … , 𝑏𝑡.

IV. EXPERIMENTS

A. Experiment Setting

We use two features, LBP [12] feature and HOG [11]

feature, to generate the dictionaries, thus the 𝐾 in the

experiments is set to 2. The proposed tracker is evaluated in

ten videos which cover different kinds of challenging factors,

such as illumination, fast motion, scale changes, cluttered

background, and occlusion. To further demonstrate its

effectiveness, other five state-of-the-art tracking algorithms

are also run for comparison including the L1 method [1], the

MTT method [7], the DFT method [13], the IVT method [14],

and the ODDL method [2]. The source codes of these

compared methods are provided by the authors.

The widely accepted metric, center location error is adopted

for evaluation. The center location error is defined as the

Euclidean distance between centers of the bounding box and

the ground truth. For fair comparison, all trackers are set to be

with the same initialization parameters.

B. Results

Without considering the time for dictionary learning, the

time used for object tracking for each frame is about 0.39

second. Table I records the video-by-video comparison results

in term of center location error. The best three results are

shown in red, green and blue. We can see that the proposed

tracker outperforms other sparse representation-based trackers

and achieves the least error in overall comparison, which

shows that the feature fusion scheme facilitate the tracking

performance. Moreover, by using the proposed feature

weighting scheme, the proposed tracker achieve a better

performance than ODDL.

Figure 1 demonstrates frame-by-frame comparison in terms

of center location error. We can see that even under large

illumination (e.g. Car4, Shaking), fast motion (e.g. Jumping),

occlusion (e.g. Faceocc, Faceocc2), or cluttered background

(e.g. Football), the proposed tracker achieves a much more

stable performance and maintain lower tracking error, which

illustrates the effectiveness of the proposed feature weighting

scheme to appearance variations and background change.

Figure 2 shows the tracking result we get from ten

challenging sequences comparing with other five state-of-the-

art algorithms. We can see that our method performs stable

and robust in various situations since it never lost the target in

all sequences.

TABLE I. VIDEO-BY-VIDEO COMPARISON IN TERMS OF

CENTER LOCATION ERROR (MEASURED IN PIXELS)

Sequence L1 IVT MTT DFT ODDL OURS

Car4 137.8 1.9 126.6 61.9 6.2 7.7

Coke11 51.7 57.4 13.9 32.2 11.5 5.9

Faceocc2 14.4 7.2 13.2 10 11.8 15.2

Football 45 8.3 9.5 30.8 12.6 5.9

Girl 113.8 62 26.2 35.2 15.7 17.1

Jumping 4.2 4.3 85.8 60.5 5.6 5.5

Shaking 110.9 97.7 94.4 8.9 118.9 11.2

Singer1 155.4 12.2 12.1 26.7 39.6 26.9

Walking 8.7 3.7 5.9 282.8 9 7.9

Faceocc 18.8 19.7 22.6 13.6 24.6 24.8

Average 66.07 27.44 41.02 56.26 25.55 12.81

(a) Football

(b)Shaking

(c)Car4

2016 24th European Signal Processing Conference (EUSIPCO)

2169

V. CONCLUSION

In this paper, we developed a novel feature weighting

scheme in multiple dictionary learning and proposed a robust

visual tracker. We measured the contribution of each feature

in each frame to adaptively and progressively update the

weight of the dictionaries. We extract multiple features from

each sample and then calculate the sparse codes for all the

extracted features. By using the sparse codes we obtained, we

can learn dictionaries and classifiers more effectively. And

after the dictionaries are learned, we weight the classification

error of each feature basing on the capability of describing the

target of each feature. By using the weighted classification

error, we combine it with the quadratic appearance distance to

serve as a joint decision measure error, and select the target

from the candidates according to the error. The weighting

procedure takes into account the characteristics of each feature

at different time, thus enhanced the adaptiveness of the

dictionaries, and has improved the tracking performance in

both reconstructive and discriminative way. Experiment

results have shown that the proposed method achieves

superior performance comparing to state-of-the-art methods.

VI. ACKNOWLEDGEMENT

This project is partially supported by Hong Kong RGC

General Research Fund HKBU 212313 and HKBU 12202514.

REFERENCES

[1] X. Mei and H. Ling, “Robust visual tracking using L1 minimization,” in

Proc. ICCV, pages 1436-1443, 2009.

[2] F. Yang, Z. Jiang and L. S. Davis, “Online discriminative dictionary
learning for visual tracking,” in Proc. WACV, pages 854-861, 2014.

[3] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,”
IEEE Trans Pattern Anal. Mach. Intell., 34(4): 791–804, 2012.

[4] J. Xing, J. Gao, B. Li, W. Hu, and S. Yan, “Robust object tracking with
online multi-lifespan dictionary learning,” in Proc. ICCV, pages 665-
672, 2013.

[5] H. Fan and J. Xiang, “Robust visual tracking with multitask joint
dictionary learning,” IEEE Trans. Circuits Syst. Video Technol., DOI:
10.1109/TCSVT.2016.2515738.

[6] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Sig. Proc., 54(11): 4311–4322, 2006.

[7] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via
multi-task sparse learning,” in Proc. CVPR, pages 2042-2049, 2012.

[8] S. Zhang, H. Yao, X. Sun and S. Liu, “Sparse coding based visual
tracking: Review and experimental comparison,” Pattern Recogn., 46(7):
1772-1788, 2013.

[9] X. Lan, A. J. Ma, and P. C. Yuen, “Multi-Cue Visual Tracking Using
Robust Feature-Level Fusion Based on Joint Sparse Representation,” in
Proc. CVPR, pages 1194-1201, 2014.

[10] X. Lan, A. J. Ma, P. C. Yuen and R. Chellappa, “Joint Sparse
Representation and Robust Feature-Level Fusion for Multi-Cue Visual
Tracking.” IEEE Trans Image Process., 24(12): 5826-5841, 2015 .

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. CVPR, pages 886-893, 2005.

[12] T. Ojala, M. Pietikäinen and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary pattern,”
IEEE Trans Pattern Anal. Mach. Intell., 24(7): 971-987, 2002.

[13] L. Sevilla-Lara and E. Learned-Miller, “Distribution fields for tracking,”
in CVPR, pages 1910-1917, 2012.

[14] D. Ross, J. Lim, R. Lin and M. Yang, “Incremental learning for robust
visual tracking,” in Int. J. Comput. Vision, 77(1-3): 125-141, 2008.

[15] J. Yang, K. Yu, Y. Gong, and T. S. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. CVPR,
pages 1794–1801, 2009.

[16] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary
for sparse coding via label consistent k-svd,” in Proc. CVPR, pages
1697–1704, 2011.

(d) Jumping

Fig.1 Frame-by-frame comparison in terms of Center

Location Error (Measured in pixels).

Fig.2 Some of the tracking results of the proposed method and

the compared methods on ten challenging sequences (from up

to down are Car4, Coke11, Faceocc2, Football, Girl, and

Shaking).

2016 24th European Signal Processing Conference (EUSIPCO)

2170

