
On the Existence of the Band-Limited Interpolation
of Non-Band-Limited Signals

Holger Boche and Ezra Tampubolon
Lehrstuhl für Theoretische Informationstechnik

Technische Universität München, 80290 München, Germany
{boche, ezra.tampubolon}@tum.de

Abstract—The distribution theory serves as an important
theoretical foundation for some approaches arose from the
engineering intuition. Particular examples are approaches based
on the delta-”function”. In this work, we show that the usual
construction of a band-limited interpolation (BLI) of signals
”vanishing” at infinity (e.g., in [1], [2]), using the delta-”function”,
is erroneous, both in the distributional sense and in the tempered
distributional sense. The latter sense is in particular important for
analyzing the frequency behaviour of that method – the aliasing
error and the truncation error. Furthermore, we show that it is
possible to construct a BLI without using the delta-”function”.
This can in particular be done easily for the space of signals
having integrable frequencies. If one consider another notion of
band-limited functions, a BLI can even be given for the space
of continuous signals ”vanishing” at infinity. For the space of
continuous signals, we answer the question whether there exists
a BLI negatively.

Index Terms—Band-limited interpolation, Band-limited sig-
nals, (Tempered) Distributions, Sampling, Divergence

I. INTRODUCTION

Signal processing is nowadays performed mostly with dig-
ital processors, while the physical quantities of the real world
remain analog. Therefore, the conversion of continuous-time
signals into discrete-time signals, i.e., sampling, and the con-
version of discrete-time signals into continuous-time signals,
i.e., interpolation (in case that the interpolation yields the
original signal, we speak of reconstruction), are essential. The
Shannon’s sampling series (SSS) [3] is probably one of the
prominent example of a reconstruction (i.e., sampling and
interpolation) method. Its significance in the signal processing
is founded by the fact, that it ensures a perfect reconstruction
of a band-limited square-integrable signal from its samples
taken at a sufficiently high rate – the Nyquist rate. Since this
initial result, many sampling theorems of different directions
have been developed, aiming to broaden the signal classes, and
to examine the convergence/divergence of the SSS for several
signal classes more closely. Some excellent overviews can be
found in e.g., [4], [5], [6], [7], [8], [9].

In standard literature, the use of the so-called delta-
”function” or Dirac-comb to describe the process of sampling
and reconstruction/interpolation by means of the SSS has
become common practice. The following interpolation method
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constitutes a prototypical example: Given a signal f – an
arbitrary function. Some authors claim (for instance: in pp.
52 in [2], in pp. 114 in [1]), that one can construct the
so-called band-limited interpolation (BLI) fπ of f , i.e., the
band-limited signal fπ P PW1

π (cf. Section II), for which
fpkq � fπpkq, @k P Z, holds. Notice that it is sufficient, only
to consider the band-limit π, since usually any other band-
limit yields from this case by simple rescaling. To construct
the BLI, they proposed the following steps: First, multiply
the signal f with the Dirac comb

°�8
k��8 δpt � kq yielding

fÒptq � fptq
°�8
k��8 δpt � kq. Subsequently, convolve fÒ

with the ideal low-pass hptq � sinpπtq{πt, resulting the signal:

fπptq :�
8̧

k��8

fpkq sinpπpt�kqq
πpt�kq . (1)

Besides, those authors claims that the FT of f and fπ can
not in general be identical, and accordingly also f and fπ ,
since aliasing might occur in the process of constructing fπ . In
particular, this claim is allowed in turn by another claim, that
the FT of fÒ can be seen as the periodization of f by period
π. There are some issues needs to be concerned with all of the
previous claims. Firstly, the use of the delta-”function”, which
constitutes the building block of the Dirac-comb, has clearly
to be founded rigorously, in the sense that the distribution
theory (cf. Section II) has to be involved therein. Secondly,
it remains unclear in which form the limit (1) does exist.
Although in some of those literature (e.g., [2] and [1]), the
basic of distribution theory was introduced, there was no effort
made to ascertain, whether those steps to construct a BLI
mentioned previously is correct in the distributional sense.
Thirdly, the FT can only be defined for the restrictive class
of distributions, viz., the class of tempered distributions (cf.
Section II). Hence, it should also be investigate, whether the
discussed BLI is also correct, not only in the distributional
sense, but also in the tempered distributional sense, since a
notion of FT can be given in the latter sense. We shall give a
discussion on this aspect in Section IV.

In this work, we aim to examine those issues by means of
techniques inspired by the Banach-Steinhaus Theorem (BST)
[10] (cf. Theorem 1). The BST constitutes one of the corner-
stones of functional analysis. It gives a powerful tool to proof
results regarding to the divergence of certain (approximation)
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processes. For instance, it was shown in [11] by means of
that technique, that there exists a signal f P PW1

π , such
that the peak value of its Shannon sampling series diverges.
There, it was also shown that this behaviour holds for a
large class of reconstruction processes. Furthermore, the BST
implied that the set of such signals, for which the previously
mentioned results holds, is large in the topological sense. As
similar, the BST was used in [12] to show some tightenings of
the Riemann-Lebesgue Lemma, i.a. the fact that band-limited
signals have typically arbitrarily slow decay, and that the FT of
integrable signals have typically worst continuity/smoothness
behaviour. By means of that technique, we will specifically
show that the BLI given in [1], [2] is actually erroneous, if
interpreted both, in distributional (cf. Theorems 2 and 3) and
tempered distributional sense (cf. Theorem 4). We will also
propose in this work a way to construct a BLI of signals in the
relatively small space (if compared to C0, the space of signals
”vanishing” at infinity, and C, the space of continuous signals,
cf. (10)) PW1 of signals having integrable frequencies (cf. (6)
and (7)). In case that one considers another notion of band-
limitedness (cf. (10)), the BLI for C0 can also be constructed
(cf. (13)). Motivated by that, we aim also to give an answer,
whether a BLI in any form for the large class of signals C may
exist. In particular, we will abnegate the existence of BLI in
any form for C. At last, we mention a question which we
aim to answer in the subsequent work: In which case does the
distribution theory gives a more general convergence statement
for BLI than that of the classical theory of analytic functions.

II. NOTATIONS

An operator denotes a linear mapping between vector
spaces, and a functional an operator between vector space and
C. Let X1 and X2 be normed spaces, and T : X1 Ñ X2. The
norm of the operator T is given by:

}T } :� sup
}x}X1

�0

}Tx}X2

}x}X1

� sup
}x}X1

¤1

}Tx}X2
� sup

}x}X1
�1

}Tx}X2

An operator is said to be bounded, if its norm is finite.
We denote the space of continuous functions on R by

C, and the space of continuous functions f vanishing at
”infinity”, i.e., lim|t|Ñ8 |fptq| � 0, by C0. Equipped by
the supremum/maximum norm: }�}8 : C0 Ñ R�

0 , f ÞÑ
suptPR |fptq|, it can be shown that C0 is a Banach space. In
this paper, we also work with the following subspaces of C
containing of continuous functions with moderate slow growth:
Cα :� tf P C : suptPR |fptq| e

�α|t|   8u, where α ¡ 0.
Equipped with the norm }f}Cα :� suptPR |fptq| e

�α|t|, one
can show that Cα is a Banach space.

The space of test functions on the real line, which denotes
simply the space of smooth functions, i.e., infinitely often
differentiable functions on the real line, with compact support,
viz. the set of points where the function is not zero-valued is
bounded and closed, denoted by D, and the space of rapidly
decreasing smooth functions, or Schwartz space by S, defined
formally by S :� tf P C8 : suptPR |t

αf pβqptq|   8u, where
C8 denotes the space of infinitely differentiable functions on

the real line. By D1

we denote the space of all continuous
functionals on D. Its elements are called distribution. Given
a function g : R Ñ C, we say that g can be interpreted as a
distribution, if the functional φ ÞÑ

³�8
�8

φptqgptqdt defines a
distribution. In particular, the class of such functions coincides
with the class of locally integrable functions, i.e., functions
which are each integrable on all compact (i.e. bounded and
closed) subsets of R, i.e., L1

loc :� tf measurable | @K �
R compact :

³
K
|fptq|dt   8u. As usual, the notion of

convergence in D1

is given as follows: a sequence tTnu in D1

is said to converge to T P D1

pRq, if limnÑ8 Tnpφq � Tpφq,
for all φ P D. Let be T P D1

, we write the action of a distri-
bution on a test function φ as usual by xT, φy :� Tpφq. Under
the term tempered distribution, we understand a functional on
S. The space of all tempered distributions is denoted by S 1

.
We denote the action of a tempered distribution T P S 1

on a
Schwartz function ϕ P S also by xT, ϕy. The convergence of
a sequence in S 1

is analogue to the convergence of sequence
in D1

. The well-known advantage of tempered distributions, is
that one can define the Fourier transform (FT) F : S 1

Ñ S 1

of
a tempered distribution by means of the equation xFT, φy �:
xT,Fφy, where φ goes over all S. Under delta-distribution
δpt�xq or δp��xq, where x P R, we understand the continuous
functional D Q ϕ ÞÑ xδp� � xq, ϕy � ϕpxq. Furthermore, for
x P R, the delta-distribution can also be seen as an element
of S 1

. For more detailed treatment of distribution theory, we
refer to e.g., [13], [14].

In standard literature, the notion of band-limitedness is
vaguely given. We find more convenient to formalize that
notion as follows: A signal f is said to be band-limited to
a band-limit ωg ¡ 0, if there exists f̂ P L1pr�ωg, ωgsq,
for which fptq � p1{2πq

³ωg
�ωg

f̂pωqeiωtdω, i.e., f is the

inverse Fourier transform (IFT) of f̂ . The space of such
band-limited functions is denoted by PW1

ωg . We remark
that there is another notion of band-limitedness (cf. (10))
Throughout this work, we mostly consider signals with band-
limit π, since all the results can be transferred to any other
band-limit by some simple rescaling. In this work, we shall
also concern with the space PW1 :� tf P C0 : f �
1

2π

³�8
�8

f̂pωqeiωtdω, f̂ P L1pRqu. Further, PW1 is equipped
with the norm }f}PW1 :� 1

2π

³�8
�8

|f̂pωq|dω, which makes
this space a Banach space.

Let B be a Banach space, a set M � B is said to be
nowhere dense if the inner of the closure of M is empty.
A set M � B is said to be of 1st category, if it can be
represented as a countable union of nowhere dense sets. The
complement of a set of 1st category is defined as a residual
set. Topologically, sets of 1st category can be seen as a small
set. Accordingly, residual sets, each as a complementary set
of a set of 1st category, can be seen as a large set. The Baire
category Theorem ensures that this categorization of sets of
a Banach spaces is non-trivial, by showing that the whole
Banach space B is not small in this sense, or can even not
be ”approximated” by such sets, i.e., it can not be written as
a countable union of sets of 1st category, and that the residual
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sets are dense in B, and closed under countable intersection.
A property that holds for a residual subset of B is called a
generic property. A generic property might not holds for all
elements of B, but for ”typical” elements of B. The so-called
Banach-Steinhaus Theorem [10], which is one of the central
results in functional analysis, constitutes a consequence of the
Baire category Theorem. One of its version can be expressed
as follows:
Theorem 1 (The Principle of Condensation of Singularity):
Let B1 and B2 be Banach spaces. Given a family Φ
of bounded operators between B1 and B2. If it holds
supTPΦ }T}B1ÑB2

� 8, then there exists an x� P B1 for
which supTPΦ }Tx�}B1

� 8. Furthermore, the set of such
x� is a residual set in B1.
The principle of condensation of singularity gives a powerful
tool for proving divergence results. The corresponding proce-
dure can be formulated as follows: Firstly, rewrite the problem
s.t. Banach spaces B1 and B2 (mostly B2 � C,R) and a family
of bounded operators Φ between B1 and B2 occurs in its refor-
mulation. Secondly, show that supTPΦ }T}B1ÑB2

� 8, which
is usually easier than observing the behaviour of }Tx}B2

, for
every T P Φ, and x P B1. Finally, one can immediately infer
that there exists not only an x P B1 s.t. the divergence result
holds, rather it holds for typical elements of B1. For more
detailed treatment of the Baire category Theorem, and the
Banach-Steinhaus Theorem, we refer to [15], [16], [17]

III. ON THE EXISTENCE OF A BLI OF C0 IN D1

First, we continue the discussion given in the 2nd paragraph
in the introduction. Instead of considering all possible signals,
we restrict ourselves to the class C0. We find the following
heuristic steps for constructing a BLI more rigorously than
that, mentioned in the introduction:

1) Although the multiplication of distributions is generally
not defined, we give the multiplication of f P C0 with
the Dirac comb1 °�8

k��8 δpt� kq as the distribution:

fÒptq �
�8̧

k��8

fpkqδpt� kq, (2)

where above expression has to be understood as the limit
of the sequence of distributions

 
fÒN

(
, where each of

the members is given by fÒN ptq �
°N
k��N fpkqδpt�kq.

2) For each N P N, the convolution of fÒN with the ideal
low-pass signal hptq � sinpπtq{πt can heuristically be
given as the distribution:

SNf :�
Ņ

k��N

fpkq sinpπpt�kqq
πpt�kq . (3)

Furthermore, it is not hard to see that f , h, and SNf ,
@N P N, can be interpreted as distributions, since they are
locally integrable. So, it stands clear to interpret (1) in the

1The Dirac comb has basically to be seen as the limit of the sequence of the
distributions

!°N
k��N δpt� kq

)
, and hence also itself a distribution, where

δ denotes the delta-distribution

distributional sense as the limit of (3). The following Theorem
asserts, that this anyway does not make sense:
Theorem 2: There exists a function f P C0, such that fÒpNq �
hπ does not converge in the distributional sense. Specifically,
there exists φ� P D, s.t. limNÑ8 |xSNf�, φ�y| � 8.
Proof: First, take an arbitrary function g� P D, with
supppg�q � r�1{2, 1{2s, g� ¥ 0, and gp0q � 1. For instance
the function g� with g�ptq :� exp

�
1 � �p1{4q

p1{4q�t2

	
, for |t|  

1{2, and g�ptq � 0 else, fulfills those requirements. By means
of g�, define next the function f�ptq :�

°8
l�1

p�1ql�1

logp1�lqg�pt�lq.
Obviously, f� is continuous and ”vanishes” at infinity.

Involving the properties of g�, the samples of f� on time
instances k P Z yields:

f�pkq �
p�1qk�1

logp1�kq , for k P N, f�pkq � 0, for k P ZzN. (4)

Now, for each N P N, and every t P RzZ, we may compute:
Ņ

k��N

f�pkq
sinpπpt�kqq
πpt�kq �

Ņ

k�1

p�1qk�1

logp1�kq
sinpπpt�kqq
πpt�kq

� sinpπtq
π

Ņ

k�1

p�1qkp�1qk�1

logp1�kq
1

pt�kq ,

where the 1st equality follows by (4), and the 2nd equality
follows from the application of the addition Theorem, and
from the identity cospπkq � p�1qk, k P N. Thus, for t P p0, 1q,
we obtain the following simple estimate:

Ņ

k��N

f�pkq
sinpπpt�kqq
πpt�kq � sinpπtq

π

Ņ

k�1

1
logp1�kq

1
p�t�kq

¡ sinpπtq
π

M̧

k�1

1
logp1�kq

1
p1�kq .

Since for each k P N, 1{rp1�xq plogp1 � xqqs is strictly mono-
tonically decreasing on rk, k � 1s, and hence the area under
its curve is strictly smaller than the area of the rectangular on
the interval rk, k�1s with height 1{rp1�kq plogp1 � kqqs, we
may continue above estimation as follows:

Ņ

k��N

f�pkq
sinpπpt�kqq
πpt�kq ¡ sinpπtq

π

Ņ

k�1

k�1»
k

dx
p1�xq logp1�xq

� sinpπtq
π log

�
logp2�Nq

log 2

	
,

where the equality follows by combining the integrals and by
substituting u :� logp1 � xq.

Now take a test function φ� P D, with φ� ¥ 0, suppφ� �
r0, 1s, and φ� � 1, for every t P r1{4, 3{4s. For instance, one
may take a suitable mesa function. For each N P N, we may
compute the action xSNf�, φ�y of SNf� to φ� by:

1»
0

pSNf�qptqφ�ptqdt ¡
1
π log

�
logp2�Nq

log 2

	 1»
0

sinpπtqφ�ptqdt

� 2
π log

�
logp2�Nq

log 2

	
cos

�
π
4

�
. (5)
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Thus limNÑ8 |xSNf�, φ�y| � 8.

Reading above Theorem, one may think optimistically, that
the case where the expression (1) is senseless for a function
f P C0 might occur seldom. As the following Theorem asserts,
this is actually not the case:

Theorem 3: The set of functions f P C0, for which 
fÒpNq � hπ

(
does not converges in the distributional sense

is a residual set in C0

Proof: Define for each N P N the functional Ψ
pNq
φ�

: C0 Ñ
C, f ÞÑ xSNf, φ�y. For each N P N, it is not hard to
see that }Ψ

pNq
φ� } is finite. Furthermore, Theorem 2 asserts

that t}Ψ
pNq
φ�

}u is unbounded. Specifically, by (5), we have

for each N P N,
���ΨpNq

φ�

��� ¥ 2
π log

�
logp2�Nq

log 2

	 ��cos
�
π
4

���,
and accordingly supNPN }Ψ

pNq
φ�

} � 8. Thus, we can con-

clude by Corollary 1 that: lim supNÑ8 }Ψ
pNq
φ�

f} � 8, and
lim supNÑ8 |xSNf, φ�y| � 8, for f from a residual set in
C0, as desired.

Remark 1: For signals in PW1, which is smaller than C0,
it is not hard to construct a BLI. Further, it is unnecessary
to involve the distribution theory: For f P PW1, define the
function:

fπ :� |Fπ, Fπpωq :�

#°8
k��8

pfpω � k2πq, |ω| ¤ π

0, else.
(6)

It can be shown, the infinite series determining Fπ converges
almost everywhere, and that Fπ P L1pRq. Observe that
Fπ P PW1

π . Further, by computations, involving Fubini-
Tonelli’s Theorem, one can show that the samples of |Fπ and
f coincides, if taken at the points Z, i.e., |Fπpkq � fpkq,
@k P Z, which gives the last hints, that fπ is a BLI of
f P PW1. A more concrete representation of fπ can locally
be derived: Since fπ P PW1

π , the values of fπ and f coincides
at the corresponding sampling points, and the SSS for PW1

π

converges locally uniformly [18], it holds for every T ¡ 0:

lim
NÑ8

max
tPr�T,T s

�����fπptq � Ņ

k��N

fpkq sinpπpt�kqq
πpt�kq

����� � 0. (7)

However, if one substitute the interval r�T, T s by R, above
series might diverges [11].

IV. ON THE EXISTENCE OF BLI OF Cα IN S 1

To be able to investigate the statement concerning to the
aliasing effect, occurring in the construction of BLI mentioned
in the introduction, it is desired to analyze the spectral proper-
ties of the expressions (2) and (3). However, as is well-known,
FT can not be defined generally for distributions. Rather, to be
able to do this operation, one has to restrict the class of those
generalized functions, to the class of tempered distributions.
Motivated by this discussions, we aim in this section to answer
the questions, whether the expressions (2) and (3) can be
interpreted as tempered distributions, where f is contained in
a subspace of C.

Firstly, we want to answer the question, whether (2)
converges in the tempered distributional sense. Specifi-
cally, we want to see, whether the sequence

@
fÒN , ϕ

D
�°N

k��N fpkq xδp� � kq, ϕy �
°N
k��N fpkqϕpkq, where f is

contained in the signal space of interests, converges, for every
ϕ P S. It is not hard to see that (2) converges in that sense, for
f P C0. Now, we aim to see whether the expression (2) makes
sense for the following larger subspace Cα of C containing
functions with moderate slow growth, where α ¡ 0. The
corresponding answer is given in the following Theorem:
Theorem 4: Let be ϕ P S, ϕ � 0, with supppϕ̂q � r�ωg, ωgs,
where 0   ωg   π. Then, the set of all f P Cα, for which:

lim sup
NÑ8

����� Ņ

k��N

fpkqϕpkq

����� � 8 (8)

holds, is a residual set in Cα.

Proof: For an arbitrary ϕ P S, and N P N, it is not hard to
see that the functional TN,ϕ on Cα, which is given by f ÞÑ°N
k��N fpkqϕpkq, is continuous. Choose a function g P D,

g � 0, with supp g � r�1{2, 1{2s, and gp0q � 1. Further
take an ϕ P S fulfilling the conditions given in the Theorem.
Subsequently, define by those choices the function fϕ on R
by fϕptq �

°�8
k��8 exppα |k|q expp�i argpϕpkqqqgpt�kq. By

some efforts, one can see that fϕ P Cα and that }fϕ}Cα � 1.
Further, notice that TN,ϕfϕ �

°N
k��N e

α|k| |ϕpkq| Thus, we
have:

}TN,ϕ} � sup
}f}Cα�1

|TN,ϕf | ¥ |TN,ϕfϕ| �
Ņ

k��N

eα|k| |ϕpkq| .

Now, assume that the statement in the Theorem for a
suitable function ϕ is not correct. Then there exists a constant
C ¡ 0 (which depends on ϕ), for which it holds }TN,ϕ} ¤ C,
@N P N, which in turn implies that:

|ϕpkq| ¤ Ce�α|k|, @k P Z (9)

Now, since ϕ̂ P S (It is well-known that FT for S is a self-
map), and in particular infinitely often differentiable, we can
express ϕ̂ by means of the uniformly convergent Fourier series
ϕ̂pωq �

°�8
k��8 ϕpkqe

�iωk, |ω| ¤ π. Subsequently, consider
the Laurent series:

Gpzq :�
�1̧

k��8

ϕpkqz�klooooooomooooooon
�:G1pzq

�
�8̧

k�0

ϕpkqz�kloooooomoooooon
�:G2pzq

, z P Cz t0u .

It is not hard to see that by (9) the power series G1 converges
and is holomorphic for z   eα, and as similar, the series G2

for z ¡ e�α. Altogether, both facts asserts that G converges
in the annulus e�α   |z|   eα. Clearly, the unit circle is
contained in the convergence region of G. Hence, we can
imply that Gpeiωq � ϕ̂pωq, |ω| ¤ π. Above equality, and
the property of ϕ̂ asserts, that Gpzq � 0, for z :� eiω , where
ωg ¤ |ω| ¤ π. Previous observation, homomorphicity of G
in the annulus e�α   |z|   eα, and the identity Theorem for
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holomorphic functions asserts that G is identical to zero on its
convergence region, and in particular on the unit circle, which
contradicts the fact that ϕ̂ � 0, which is an implication of the
assumption ϕ � 0, since the FT is a bijection for S.
Thus Theorem 4 asserts that the step (2) can not be founded
rigorously in the sense of S 1

for all functions in Cα, α ¡ 0,
and of course for functions in C0, which negates the rigorosity
of (3), and hence (1) in S 1

.
Remark 2: We are even able to show that above Theorem
holds for the strictly smaller Banach space C�α,1, containing
functions f P Cα, for which fptq � 0, @t ¤ 0, and³8
0
|fptq|dt   8 holds. The corresponding proof will be given

in the preceding paper.

V. BLI FOR LARGER SIGNAL CLASSES

We have shown in this work, that the BLI of the form (1)
is erroneous even for functions in C0 (cf. Theorems 2 and
3), which has relatively regularly behaviour. Furthermore, we
have given a rigorous way to construct a BLI for functions
in PW1 (cf. Remark 1). However, this signal class is strictly
smaller than C0. This raises the question, whether it is possible
to construct a BLI in any form for a signal space larger than
PW1.

For C, it is obvious that a BLI in our sense can not exists,
since by Riemann-Lebesgue Lemma, functions in PW1

π has
to vanish at infinity. The question now is whether the situation
changes, if one consider another notion of band-limitedness:
A signal g band-limited to π, if its extension g to C fulfills g
is analytic and:

@ε ¡ 0 : DC ¡ 0 : |gpzq| ¤ Cepπ�εq|z|, @z P C. (10)

Further, call the corresponding space Bπ . By this definition, we
can define the BLI of a function f as a function fπ fulfilling:

fπ P Bπ fπpkq � fpkq, @k P Z (11)

The following Theorem asserts that even the BLI for C can
not exists in the sense (11):
Theorem 5: Let α ¡ 0 be arbitrarily chosen. The set of all
f P Cα, for which a BLI fπ with band-limit π in the sense
(11) exists, is a set of 1st category in Cα.
Proof: Let be f P Cα. A necessary condition for f to admit
a BLI fπ in the sense (11) is certainly:

lim sup
kÑ8

|fpkq| e�
α
2 |k|   8, (12)

Now, we aim to show, that the set of f P Cα, for which (12)
holds, is a set of 1st category in Cα. Notice that this would
immediately imply that the statement in the Theorem holds. To
show this, consider for each k P Z, the continuous functional
Tk : Cα Ñ C, given by f ÞÑ fpkqe�

α
2 |k|. We can give an

estimation }Tk} ¥ e
α
2 |k|, by means of the particular choice

fptq � eα|t| P Cα, with }f}Cα � 1. From there, it follows
that supkPN }Tk} � 8, and Theorem 1 asserts finally, that the
set of f P Cα, for which supkPN |Tkf | � 8, or equivalently:
for which (12) does not hold, is a residual set in Cα. For

this reason, the set of all f P Cα, for which (12) holds, as a
complementary set of a residual set, is of 1st category in Cα,
as desired.
In other words, Theorem 5 asserts that a BLI in any form
can exists in the best case for functions in a topologically
small subset of Cα. This abdicates clearly the existence of
a BLI for the whole Cα, and correspondingly for the whole
C. Luckily, for the signal space C0 one can construct a BLI
in the more general sense, cf. (11). In particular, it has a
different form than that given in Remark 1: For an f P C0, the
following Valiron series converges pointwise and locally (but
not globally) uniformly to a function in Bπ [11]:

fπptq :� fpt0q
sinpπtq
sinpπt0q

� pt� t0q
8̧

k��8

fpkq
k�t0

sinpπpt�kqq
πpt�kq , (13)

where t0 P RzZ.
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