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Abstract—A periodic sequence is defined as a perfect periodic
sequence for a certain nonlinear filter if the cross-correlation
between any two of the filter basis functions, estimated over
a period, is zero. Using a perfect periodic sequence as input
signal, an unknown nonlinear system can be efficiently identified
with the cross-correlation method. Moreover, the basis functions
that guarantee the most compact representation according to
some information criterion can also be easily estimated. Perfect
periodic sequences have already been developed for even mirror
Fourier, Legendre and Chebyshev nonlinear filters. In this paper,
we show they can be developed also for nonlinear Wiener filters.
Their development is non-trivial and differs from that of the
other nonlinear filters, since Wiener filters have orthogonal basis
functions for white Gaussian input signals. Experimental results
highlight the usefulness of the proposed perfect periodic se-
quences in comparison with the Gaussian input signals commonly
used for Wiener filter identification.

Index Terms—Perfect periodic sequences, nonlinear Wiener
filters, cross-correlation method

I. INTRODUCTION

The Wiener nonlinear (WN) filters [1], [2], which derive

from the truncation of the Wiener series, were introduced to

overcome one of the main limitations of Volterra filters. The

Volterra filters basis functions are never orthogonal, not even

for white input signals. The Wiener series was introduced by

applying an orthogonalization procedure for white Gaussian

inputs to the Volterra series, deriving the so-called Wiener G-

functionals. The WN filters derive from the double truncation

with respect to order and memory of the Wiener series. They

can be expressed as a linear combination of Wiener basis

functions, which are orthogonal for white Gaussian input

signals. As a consequence, the WN filter coefficients modeling

and unknown nonlinear system can be computed using the

cross-correlation method, i.e., calculating the cross-correlation

between the basis functions and the unknown system output.

The cross-correlation method applied to stochastic inputs

presents many drawbacks. First of all, it often requires million

of samples to accurately estimate the filter coefficients. More-

over, an exact white Gaussian input cannot be generated, since

it is necessary to saturate the maximum sample amplitude.

Furthermore, also by using double precision calculation, the

central moments of a Gaussian input soon depart from ideal

values as the order of the filter increases, unless millions

of values are used [3]. So, in the identification with cross-

correlation methods like that of Lee-Schetzen [1], it was shown

[3] that the input non-ideality affects particularly the diagonal

points of the kernels. This problem is further exacerbated in

presence of errors due to model order truncation.

Improvements to the Lee-Schetzen’s method, in order to

overcome the problem of input non-ideality in the identifica-

tion of diagonal points were provided in [3], [4]. Furthermore

a solution to mitigate the identification errors due to model

order truncation is proposed in [5].

Recently, other families of polynomial filters, which guar-

antee the orthogonality of the basis functions for appropriate

stochastic inputs, were introduced. The even mirror Fourier

nonlinear (EMFN) filters [6] and the Legendre nonlinear (LN)

filters [7] have orthogonal basis functions for white uniform

input signals in [−1,+1]. The EMFN filters are based on

trigonometric expansions with even symmetry of the input

signal samples, and do not include a linear term among

the basis functions. In contrast, the LN basis functions are

products of Legendre polynomials of the input signal samples

and include a linear term in the first order basis functions. Also

the Chebyshev nonlinear (CN) filters [8] have orthogonal basis

functions for white input signals with a particular nonuniform

distribution in [−1,+1]. The CN filters are based on Cheby-

shev polynomial expansion of the input signal samples and

include a linear term.

As an alternative to white random signals, appropriate

deterministic input signals have been proposed for system

identification. Among them, perfect periodic sequences (PPSs)

[9], [10] have been used as inputs for linear system iden-

tification [11], [12]. In case of nonlinear filters, a periodic

sequence is defined as a PPS if the cross-correlation between

any two different basis functions, estimated over a period,

is zero. Therefore, using a PPS as input signal it is also

possible to efficiently identify an unknown system with the

cross-correlation method. Moreover, the basis functions that

guarantee the most compact representation of the nonlinear

system according to some information criterion can also be

easily estimated. In this context, PPSs have already been

developed for EMFN [13], [14], LN [15], [16], and CN

filters [8]. The PPSs have been obtained by imposing the

orthogonality of the basis functions and solving a system of

nonlinear equations with an iterative approach.

In this paper, we show that PPSs can be developed also for

Wiener filters. Since the Wiener basis functions are orthogonal

for white Gaussian input signals, the development of the PPSs

is non trivial and differs from that of EMFN, LN, and CN
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filters. The perfect orthogonality of the Wiener basis functions

for PPS inputs allows to avoid a priori the accuracy problems

in the estimation of the kernels diagonal points. In the ex-

perimental results the PPSs are used for system identification,

that it is a fundamental issue of several applications, such as,

nonlinear system equalization and nonlinear effects emulation.

The paper is organized as follows. Section II derives

the Wiener basis functions and discuss the cross-correlation

method. Section III introduces the PPSs for WN filters. Section

IV provides several experimental results demonstrating the

advantages of nonlinear system identification based on cross-

correlation method and PPSs. Concluding remarks follow in

Section V.

The following notation is used throughout the paper: E[·]
denotes mathematical expectation, < · >L denotes average

over a period of L samples, N (0, σ2
x) indicates the zero mean,

variance σ2
x, normal distribution.

II. WIENER NONLINEAR FILTER

In contrast to the classical approach for introducing the

WN filter, in this section we first derive the set of Wiener

basis functions. Then the WN filter is defined as the linear

combination of the Wiener basis functions up to a certain order

P and memory N .

We are interested in deriving a set of polynomial basis

functions that can arbitrarily well approximate a discrete time,

time-invariant, finite memory, continuous, nonlinear system,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)] (1)

with f a continuous functions from R
N to R. The set of basis

functions should be orthogonal for any white Gaussian input

signal x(n) ∈ N (0, σ2
x).

Let us first consider the one-dimensional case, i.e., N =
1. The nonlinear system can be arbitrarily well approximated

with the set of polynomial basis functions,

{1, x(n), x2(n), x3(n), . . .}, (2)

which however are not orthogonal for white Gaussian input

signals. A set of orthogonal polynomial basis functions can

be obtained by applying the Gram-Schmidt orthogonalization

to the set in (2), as follows

{1, x(n), x2(n)− σ2
x, x3(n)− 3σ2

xx(n), . . .}. (3)

In order to derive a set of orthogonal basis functions for the

N -dimensional case, the same procedure of [6], [7], and [8] is

followed. First, the one-dimensional basis functions are written

for x(n), x(n− 1), . . . , x(n−N + 1),

1, x(n), x2(n)− σ2
x, . . .

1, x(n− 1), x2(n− 1)− σ2
x, . . .

...

1, x(n−N + 1), x2(n−N + 1)− σ2
x, . . .

Then, the terms with different variable are multiplied in any

possible manner, taking care of avoiding repetitions. These

basis functions and their linear combinations form an algebra

on any compact in R
N that satisfies the requirements of

the Stone-Weierstrass theorem [17]. Thus, the Wiener basis

functions can arbitrarily well approximate the system in (1).

The Wiener basis functions of order from 0 to 3 and memory

N are summarized in Table I. A Wiener filter of order P ,

memory N , is a linear combination of the Wiener basis

functions wi(n) up to the order P and memory N ,

ỹ(n) =
∑

i

ciwi(n). (4)

It is easy to verify that by construction the Wiener basis

functions are orthogonal for a white Gaussian input signal

x(n) ∈ N (0, σ2
x), i.e., E[wi(n)wj(n)] = 0 for any i 6= j.

Thus, the coefficients ci in (4) can be estimated with the cross-

correlation approach as follows:

ci =
E[y(n)wi(n)]

E[w2
i (n)]

, (5)

where y(n) is the unknown nonlinear system output. The

most relevant basis functions, i.e., the basis functions that

guarantee the most compact representation according to some

information criterion can also be estimated. Indeed, exploiting

the orthogonality, the mean square error reduction (MSE)

provided by a basis function wi(n) is

δMSEi =
E[y(n)wi(n)]

2

E[w2
i (n)]

. (6)

The basis functions can be ranked according to the MSE

reduction they produce and the most important basis functions

according to some information criterion can be selected. In

TABLE I
THE WIENER BASIS FUNCTIONS

Order 0

1.

Order 1

x(n), x(n− 1), . . . , x(n−N + 1).

Order 2

x2(n)− σ2
x
, . . . , x2(n−N + 1)− σ2

x
,

x(n)x(n− 1), . . . , x(n−N + 2)x(n−N + 1),
.
.
.

x(n)x(n−N + 1).

Order 3

x3(n)− 3σ2
x
x(n), . . . , x3(n−N + 1)− 3σ2

x
x(n−N + 1),

(x2(n)− σ2
x
)x(n− 1), . . . , (x2(n−N + 2)− σ2

x
)x(n−N + 1),

(x2(n)− σ2
x
)x(n− 2), . . . , (x2(n−N + 3)− σ2

x
)x(n−N + 1),

.

.

.

(x2(n)− σ2
x
)x(n−N + 1),

x(n)(x2(n− 1)− σ2
x
), . . . , x(n−N + 2)(x2(n−N + 1)− σ2

x
),

x(n)(x2(n− 2)− σ2
x
), . . . , x(n−N + 3)(x2(n−N + 1)− σ2

x
),

.

.

.

x(n)(x2(n−N + 1)− σ2
x
),

x(n)x(n− 1)x(n− 2), . . . ,
.
.
.

x(n)x(n−N + 2)x(n−N + 1).
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Section IV, the Bayesian information criterion [18] will be

used in the experimental results.

In the next Section, PPSs for WN filters are derived.

The PPS input signal guarantees the orthogonality of

the basis functions over a period of the sequence, i.e.,

< wi(n)wj(n) >L= 0, for any i 6= j. The formulas in (5)

and (6) still hold provided the expectation E[·] is replaced by

the time average < · >L.

III. PPS FOR NONLINEAR WIENER FILTER

We are interested in developing a PPS xp(n) of period L
for a Wiener filter of order P , memory N , and Gaussian input

variance σ2
x. Moreover, we want the PPS to be bounded by 1,

i.e., |xp(n)| < 1 for all n, so that the input sequence can be

faithfully reproduced by digital to analog converters.

The PPS should guarantee the orthogonality of the basis

functions over a period. The Wiener basis functions are

orthogonal for a white Gaussian input signal x(n) ∈ N (0, σ2
x).

Let us consider a periodic sequence that over a period provides

the same joint moments of a Gaussian process N (0, σ2
x) up to

the order 2P and memory N . For the construction rule of the

Wiener basis functions, the periodic sequence guarantees the

orthogonality of the Wiener basis functions up to the order P
and memory N , < wi(n)wj(n) >L= 0, for any i 6= j, and

thus is a PPS.

Differently from [8], [14], [16], in this paper to develop

PPSs for WN filters we impose the following system of

nonlinear equations:

< xk0

p (n) · xk1

p (n− 1) · . . . · xkN−1

p (n−N + 1) >L=

= µk0
· µk1

· . . . · µkN−1
, (7)

for all k0, k1, . . . , kN−1 ∈ N with k0 > 0 and k0+k1+ . . .+
kN−1 ≤ 2P , and µk the k-th moment of the Gaussian process

N (0, σ2
x),

µk = E[xk(n)] =

{

0 for k odd,

σk
x(k − 1)!! for k even,

(8)

with q!! = q · (q − 2) · (q − 4) · . . . · 1.

The nonlinear system in (7) has a number of equations

equal to the number of different basis functions in a Volterra

filter of order 2P − 1 and memory N (indeed, since k0 > 0,

there is always a factor xp(n) in (7)). Thus, the number of

equations is Q =
(

N+2P−1

N

)

. For sufficiently large L, this

is an underdetermined system of equations in the variables

xp(n) that may have infinite solutions. Any algorithm capable

of solving systems of nonlinear equations can be used for

finding a solution to the system in (7). We have applied for

this purpose the Newton-Raphson method, which has been

implemented as described in [19, ch. 9.7] with the only

modification of reflecting the variables xp(n) in [−1,+1]
every time they exceeded the range. This modification allows

to obtain a sequence bounded by −1 and +1, as desired, but

the Newton-Raphson method converges to a solution only if

the signal power σ2
x is sufficiently small. Indeed, the PPSs for

Wiener filters have a sample distribution that is similar to the

Gaussian. Intuitively, the modified Newton-Raphson method

can converge only if the probability of finding samples outside

the range [−1,+1] is sufficiently small. In the presented

approach the iterations of Newton-Raphson method starts from

a random Gaussian distribution of the variables with variance

σ2
x and the Jacobian matrix is computed analytically. For L

ranging between 3Q and 4Q and for σ2
x ≤ 1/10, we have

always been able to find a solution for the system in (7).

The number of iterations necessary to find a solution depends

on the ratio L/Q and on the signal power σ2
x. Employing a

numerical method, only an approximate solution is obtained

for the PPS. Nevertheless, the precision of the solution can

be arbitrarily improved acting on the stop-condition of the

Newton-Raphson method.

The main problem in the derivation of PPSs is the large

number of equations Q of the system in (7). Indeed, Q
increases exponentially with the order P and geometrically

with the memory N . A possibility for reducing Q is that of

exploiting sequences with a specific structure. As done in [20]

and [7], the number of equations can almost be halved by im-

posing symmetry (when for every subsequence a1, a2, . . . , aN ,

there is also the reversed one aN , . . . , a1), oddness (when

for any subsequence a1, . . . , aN , there is also the negated

one −a1, . . . ,−aN ), oddness-1 (when for every subsequence

a1, a2, a3, a4, . . . , aN , there is the subsequence formed by

alternatively negating the terms a1,−a2, a3,−a4, . . . ,−aN ).

With symmetry, for every couple of symmetric joint moments

(e.g., E[x(n)x3(n − 1)] and E[x3(n)x(n − 1)]) it suffices

to consider only one of them. With oddness, all odd joint

moments are a priori zero. With oddness-1, all odd-1 joint

moments are a priori zero. We define odd-1 those joint

moments that change sign by alternatively negating the sign

of the samples. Similarly, odd-2 and odd-4 moments could

be considered. We can impose at the same time different

structural conditions. The reduction in the number of equations

Q obtained with these conditions is often important for being

able to find a solution to the system in (7) in acceptable

time. Indeed, the Newton-Raphson algorithm has memory and

processing time requirements that grow with Q3.

Different PPSs for WN filters of order 3, signal power

σ2
x = 1/12, and memory N ranging from 5 to 20, have been

developed and are available for download [21].

IV. EXPERIMENTAL RESULTS

A. First experiment

In the first experiment, a simulated nonlinear system has

been considered with a sampling frequency of 44.1 kHz. In

particular, it consists of a cascade of a linear filter (i.e., a

lowpass filter given by the scaling function of the Daubechies

Wavelet of order 10 [5]) and a static nonlinearity that is given

by the following function:

f(x) =
4.5

1 + 2e−αx
− 4.5

3
, (9)

where α is the constant used to vary the degree of nonlinearity

in the performed experiments.

Figure 1 shows the second, third, and total harmonic dis-

tortions on a 1 000 Hz signal at different α. The system of
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(9) has been identified with Wiener filter exploiting a PPS

(WN PPS) suitable for filters of order 3, memory 10, and a

period of 12 012 samples, a Gaussian Noise of 12 012 samples

(WN GN1) and 1 000 000 samples (WN GN2). The system

coefficients have been estimated using the cross-correlation

method presented in [3] and the obtained results have been

evaluated considering the mean square error between the

desired and the estimated output signals. Figure 2 shows that

the WN PPS provides the lowest error values in comparison

with the Gaussian noise. More in detail, increasing α and

thus the effect of the system nonlinearity, the behavior of

the identified models tends to approach since the adopted

order 3 is insufficient to approximate the nonlinear system

characteristics.

B. Second experiment

In the second experiment, we consider the identification

of an audiophile vacuum tube preamplifier, Behringer Tube

Ultragain Mic 100. Acting on the gain control of the pream-

plifier, different levels of nonlinear distortion can be imposed.

Twenty-two different settings of the gain control have been

considered, with increasing value of the nonlinear distortion.

Figure 3 shows at the different settings the second, third, and

total harmonic distorion on a 200 Hz signal having signal

power < x2(n) >L= 1/12. Different input signals have

been fed to the preamplifier and the output signals have been

recorded at 8 kHz sampling frequency using a laptop PC. At 8
kHz sampling frequency the preamplifier has a memory lower

than 20 sample. Thus, the preamplifier has been identified with

PPSs for Wiener, EMFN, LN, and CN filters using sequences
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Fig. 3. Second, third and total harmonic distortion.

suitable for filters of order 3, memory 20, and with a period of

357 956 samples. The perfect sequences had the same signal

power, i.e., 1/12. Thus, the peak amplitude of the PPS for

WN filter, which has been normalized to 1, is twice the peak

amplitude of the PPS for EMFN and LN filters, and it is
√
6-

times larger than that of CN filters. The preamplifier has also

been identified with a zero mean white Gaussian noise with

variance 1/12. In this case, the 0.055% of the samples that

exceeded the range [−1,+1] were truncated. In all conditions,

the signal to noise ratio was larger than 46 dB.

The coefficients of the filter have been first estimated

with the cross-correlation method. Then, the most relevant

basis functions were selected by minimizing the Bayesian

information criterion,

B(ν) = L loge[σ
2
ǫ (ν)] + ν loge[L] (10)
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Fig. 4. Number of selected bases (a) and unexplained power (b) for Wiener,
EMFN, LN, CN filters.
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with σ2
ǫ (ν) is the variance of the residual error associated to

the first ν most relevant terms of the model and L is the

number of data used for the model estimation.

Since the Wiener basis functions are only approximately

orthogonal for a white Gaussian noise input, the WN filter

has also been identified with an exact least-square algorithm,

i.e., the method of Li Peng Irwin [22].

Figure 4 shows the number of selected terms and the

percentage of unexplained power (the ratio in percent between

the residual MSE and the power of the output signal) in the

different identifications. In the figure, the EMFN, LN, and CN

filters have been identified with the cross-correlation method

over a PPS period. The WN filter has been identified with the

cross-correlation method on a PPS period (Wiener PPS), on

357 956 Gaussian noise samples (Wiener GN1), on 1 000 000
Gaussian noise samples (Wiener GN2), or with the method

of Li Peng Irwin on 357 956 Gaussian noise samples (Wiener

LPI). The WN filter has been identified on the Gaussian noise

also with the method of [5], obtaining MSE results identical

to those presented in Figure 4(b) with plots WN GN1 and WN

GN2.

Figure 4 clearly shows the very large number of selected

basis functions and the worse percentage of unexplained power

of the WN filter estimated with the cross-correlation method

on Gaussian noise inputs. On the contrary, when the WN filter

is identified with a PPS or with the method of Li Peng Irwin,

the number of selected basis functions and the percentage of

unexplained power are much lower and very similar to values

obtained for the other polynomials filters, e.g., LN and CN.

The EMFN filter in this experiment provides slightly worse

results than the LN, CN and WN filters identified with a PPS,

because it lacks a linear term. On the contrary, for saturation

distortions higher than those considered here, EMFN filters

are able to provide better results than the other filters [8].

It is important to note there is a significant difference

in the effort necessary to estimate the WN filter using the

cross-correlation method with PPSs and using the method

of [22]. Computing the experimental results for the cross-

correlation method required a few hours of computer time.

In contrast, obtaining the same results with the method in

[22] requested days of simulations on the same computer.

In fact, indicating with T the number of samples used for

the identification, B the number of candidate basis functions,

and S the number of selected basis functions, the method of

[22] has a computational cost of TBS2 operations, the cross-

correlation method has a cost of TB operations.

V. CONCLUSIONS

PPSs for the WN filter have been developed in the paper.

Using a PPS input, the Wiener basis functions are orthogonal

over a period of the PPS. Thus, the WN filter can be estimated

with the cross-correlation method and the most relevant basis

functions according to some information criterion can be

identified. The PPSs allow to avoid the main problem in

the identification of WN filters using the cross-correlation

method: the non-ideality of the Gaussian input signals used

in common practice, which affect mainly the kernels diagonal

points. The perfect orthogonality of the Wiener basis functions

for PPS inputs allow to accurately estimate all coefficients of

the WN filter. Aliasing errors may be present only in case of

an underestimation of the unknown system memory or order,

as have already been discussed for PPSs for EMFN [14], LN

[16], and CN [8] filters.
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