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Abstract—Multiplicative updates are widely used for nonneg-
ative matrix factorization (NMF) as an efficient computational
method. In this paper, we consider a class of constrained
optimization problems in which a polynomial function of the
product of two matrices is minimized subject to the nonnegativity
constraints. These problems are closely related to NMF because
the polynomial function covers many error function used for
NMF. We first derive a multiplicative update rule for those
problems by using the unified method developed by Yang and
Oja. We next prove that a modified version of the update rule
has the global convergence property in the sense of Zangwill
under certain conditions. This result can be applied to many
existing multiplicative update rules for NMF to guarantee their
global convergence.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1], [2] is a tech-
nique to decompose a given nonnegative matrix X ∈ Rm×n

+

into two nonnegative matrices W = (Wik) ∈ Rm×r
+ and

H = (Hkj) ∈ Rr×n
+ , where R+ denotes the set of nonnegative

numbers, in such a way that WH is approximately equal to
X . NMF is usually formulated as an optimization problem of
the form:

minimize D(X ∥WH)
subject to W ≥ 0m×r,H ≥ 0r×n

(1)

where 0m×r (0r×n, resp.) is the m× r (r × n, resp.) matrix
of all zeros and the inequality holds componentwise. The
objective function D(X ∥WH) represents an error between
X and WH . Euclidean distance and I-divergence are widely
used for the error function but various other divergences can
also be used (see Reference [3] for example). Strictly speaking,
some of those functions are not defined for all points in the
feasible region of (1). Hence, for the sake of convenience, we
consider them as extended real-valued functions, that is, we
add the value +∞ to their range.

Multiplicative update rules, that were first proposed by Lee
and Seung [2], [4] for Euclidean distance and I-divergence, are
widely used as a simple and efficient computational method
for finding local optimal solutions of (1). The basic idea
behind this approach is that the new solution is obtained by
minimizing an auxiliary function at the current solution, which
is strictly convex. Recently, Yang and Oja [3] extended this
idea and developed a unified method for deriving multiplicative
update rules for eleven error functions including Euclidean
distance and I-divergence.

As is well known, each multiplicative update rule decreases
the value of the corresponding error function monotonically.
However, this does not mean the convergence of the se-
quence of solutions. One may easily understood this claim
by observing the fact that if (W ∗,H∗) is a solution to the
equation WH = X then all pairs given by (cW ∗, 1

cH
∗)

where c is a positive constant are also solutions. In addition,
the multiplicative update rules have a serious drawback that
they are not defined for all pairs of nonnegative matrices. To
avoid this problem, some authors have proposed to modify the
original multiplicative update rules so that all entries of W
and H are kept positive [5]–[7]. Furthermore, some authors
proved that if this modification is used then the sequence of
solutions contains at least one convergent subsequence and the
limit of any convergent subsequence is a stationary point of
the corresponding optimization problem [5], [8]–[10].

In this paper, we focus our attention on the case where
the objective function D(X ∥WH), which is denoted as
D(W ,H) for simplicity, is expressed as

D(W ,H)

= a1

∑
ij

b1ij(WH)c1ij

d1

+ a2

∑
ij

b2ij(WH)c2ij

d2

(2)

where at, ct, dt (t = 1, 2) are nonzero constants, btij (t =
1, 2; i = 1, 2, . . . ,m; j = 1, 2, . . . , n) are nonnegative con-
stants. (WH)ij is the (i, j)-th entry of the matrix WH ∈
Rm×n. We should note that many error functions used for
NMF can be expressed in the form of (2) if we apply

ln z = lim
µ→0+

zµ − 1

µ

to logarithmic functions. In fact, nine among eleven error
functions considered in [3] are covered by (2) (see Table I
for more details). The objective of this paper is to find a set
of conditions on the constants under which a multiplicative
update rule can be derived by the unified approach of Yang
and Oja [3] and a modified multiplicative update rule has
the global convergence property mentioned above. By doing
so, it is expected that a general sufficient condition directly
applicable to many error functions are obtained.
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TABLE I. LIST OF ERROR FUNCTIONS THAT CAN BE EXPRESSED IN THE FORM OF THE OBJECTIVE FUNCTION OF (2) (SEE REFERENCE [3] FOR MORE
DETAILS). FOR EACH FUNCTION, THE VALUES OF THE CONSTANTS ARE PRESENTED, WHERE Xij IS THE (i, j)-TH ENTRY OF THE NONNEGATIVE MATRIX

X THAT HAS TO BE APPROXIMATED BY WH , AND µ IS A SUFFICIENTLY SMALL POSITIVE NUMBER.

Error function a1 b1ij c1 d1 a2 b2ij c2 d2
Euclidean distance 1 1 2 1 −2 Xij 1 1
I-divergence 1 1 1 1 − 1

µ Xij µ 1
Dual I-divergence 1

µ X−µ
ij 1 + µ 1 − 1+µ

µ 1 1 1
Itakura-Saito divergence − 1

µ Xµ
ij −µ 1 1 Xij −1 1

α-divergence
1) α > 0, α ̸= 1 1

α 1 1 1 − 1
α(1−α) Xα

ij 1− α 1
2) α < 0 − 1

α(1−α) Xα
ij 1− α 1 1

α 1 1 1
β-divergence (β ̸= 0,−1) 1

1+β 1 1 + β 1 − 1
β Xij β 1

Kullback-Leibler divergence 1
µ 1 1 µ − 1

µ Xij µ 1
γ-divergence (γ ̸= 0,−1) 1

µ(1+γ) 1 1 + γ µ − 1
µγ Xij γ µ

Rényi divergence (ρ > 0, ρ ̸= 1) 1
µ 1 1 µ − 1

µ(1−ρ) Xρ
ij 1− ρ µ

II. MAIN RESULT

For the t-th term (t ∈ {1, 2}) of the right-hand side of (2),
we define three functions as

ft(x) = atx
dt , gt(x) = atx

ctdt and ht(x) = atdtx
ct . (3)

We also define ϕ1 and ϕ2 as

ϕt =


ctdt, if ft(x) and gt(x) are convex,
1, if ft(x) is convex and gt(x) is concave,
ct, if ft(x) is concave and ht(x) is convex,
1, if ft(x) and ht(x) are concave.

(4)

Applying the method proposed by Yang and Oja [3] to the
objective function (2), we obtain a multiplicative update rule,
which is formally described as

W
(l+1)
ik = uik(W

(l),H(l)), (5)

H
(l+1)
kj = vkj(W

(l+1),H(l)) (6)

where (W (l),H(l)) is the solution after l iterations, W (l)
ik is

the (i, k)-th entry of W (l), H(l)
kj is the (k, j)-th entry of H(l),

and the functions uik and vkj are defined by

uik(W ,H) = Wik

[
−
a2c2d2

(∑
pq b2pq(WH)c2pq

)d2−1

a1c1d1

(∑
pq b1pq(WH)c1pq

)d1−1

×
∑

q b2iq(WH)c2−1
iq Hkq∑

q b1iq(WH)c1−1
iq Hkq

] 1
ϕ1−ϕ2

(7)

and

vkj(W ,H) = H̃kj

[
−
a2c2d2

(∑
pq b2pq(WH)c2pq

)d2−1

a1c1d1

(∑
pq b1pq(WH)c1pq

)d1−1

×
∑

p b2pj(WH)c2−1
pj Wpk∑

p b1pj(WH)c1−1
pj Wpk

] 1
ϕ1−ϕ2

. (8)

Note that uik and vkj are not always well-defined. For
example, if f1(x) = a1x

d1 is convex, g1(x) = a1x
c1d1 is

concave, and both f2(x) = a2x
d2 and h2(x) = a2d2x

c2 are
concave then it follows from (4) that ϕ1 = ϕ2 = 1. In the
following theorem, we give a sufficient condition for uik and
vkj to be well-defined for all positive matrices W and H .

Theorem 1: Suppose that the constants in (2) satisfy the
following three conditions:

a1c1d1 > 0 > a2c2d2, (9)

c1d1 > c2d2, (10)

b1ij > 0 for all i and j. (11)

Then the functions uik (i = 1, 2, . . . ,m; k = 1, 2, . . . , r) and
vkj (k = 1, 2, . . . , r; j = 1, 2, . . . , n) are well-defined and take
nonnegative values for all positive matrices W and H .

The proof sketch for Theorem 1 will be given in Section IV.

Note that even though the condition in Thoerem 1 is
satisfied, the functions uik and vkj are not defined for all
nonnegative matrices. In order to avoid this problem, we take
the same approach as in References [6] and [7], that is, we
consider the modified multiplicative update rule:

W
(l+1)
ik = max

(
ϵ, uik(W

(l),H(l))
)
, (12)

H
(l+1)
kj = max

(
ϵ, vkj(W

(l+1),H(l))
)

(13)

where ϵ is any positive constant. It is apparent from these
equations that every entry of W (l) and H(l) is not less than
ϵ for all l. Thus it is natural to consider, instead of (1), the
modified optimization problem:

minimize D(W ,H)
subject to W ≥ ϵ1m×r, H ≥ ϵ1r×n

(14)

where 1m×r (1r×n, resp.) is the m× r (r × n, resp.) matrix
of all ones. In the following, the feasible region and the
set of stationary points of (14) are denoted by Fϵ and Sϵ,
respectively.
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The following theorem gives a sufficient condition for the
modified multiplicative update rule described by (12) and (13)
has the global convergence property.

Theorem 2: Suppose that the constants in (2) satisfy (9),
(10), (11) and

d1 ≥ 1 ≥ d2. (15)

Then for any positive constant ϵ and any initial solution
(W (0),H(0)) ∈ Fϵ the sequence {(W (l),H(l))}∞l=0 gen-
erated by (12) and (13) contains at least one convergent
subsequence and the limit of any convergent subsequence
belongs to Sϵ.

The proof sketch for Theorem 2 will be given in Section V.

Let us see which error functions in Table I satisfy the
conditions (9), (10), (11) and (15). It is easy to see that for
Euclidean distance, I-divergence, α-divergence with α > 0 and
α ̸= 1, and β-divergence, all of the four conditions hold. As for
Dual I-divergence, Itakura-Saito divergence and α-divergence
with α < 0, all of the four conditions hold if X is positive1. On
the other hand, for the last three error functions, at least one of
the four conditions does not hold. In case of Kullback-Leibler
divergence, (10) does not hold because c1d1 = c2d2. As for γ-
divergence and Rényi divergence, (15) does not hold because
d1 = d2 = µ < 1. The problem of these three error functions
were recently pointed out by Seki and Takahashi [11].

III. DERIVATION OF MULTIPLICATIVE UPDATE RULE

In this section, we derive the multiplicative update rule de-
scribed by (5)–(8) by applying the method of Yang and Oja [3]
to (2). To do that, we first need to construct an auxiliary func-
tion [4] of (2). Here, D̄(W ,H, W̃ , H̃) is called an auxiliary
function of (2) if it satisfies D̄(W ,H, W̃ , H̃) ≥ D(W ,H)

for all (W ,H, W̃ , H̃) ∈ Rm×r
++ ×Rr×n

++ ×Rm×r
++ ×Rr×n

++ and
D̄(W ,H,W ,H) = D(W ,H) for all (W ,H) ∈ Rm×r

++ ×
Rr×n

++ where R++ is the set of all positive real numbers.

Let the t-th term of (2) be denoted by Dt(W ,H), and let
D̄t(W ,H, W̃ , H̃) be any auxiliary function of it. Then it is
easily seen that D̄1(W ,H, W̃ , H̃) + D̄2(W ,H, W̃ , H̃) is
an auxiliary function of (2). Using the method of Yang and
Oja, we obtain D̄t(W ,H, W̃ , H̃) as follows.

1) If both ft(x) and gt(x) are convex in R++ then
D̄t(W ,H, W̃ , H̃) is given by

at

∑
ij

btij(W̃ H̃)ctij

dt−1∑
ij

btij(W̃ H̃)ct−1
ij

×
∑
k

(W̃ikH̃kj)
1−ctdtW ctdt

ik Hctdt

kj .

2) If ft(x) is convex and gt(x) is concave in R++ then
D̄t(W ,H, W̃ , H̃) is given by

atctdt

∑
ij

btij(W̃ H̃)ctij

dt−1

1If X is not positive, we only have to replace all zeros in X with ϵ.

×
∑
ij

btij(W̃ H̃)ct−1
ij (WH)ij + constant . (16)

3) If ft(x) is concave and ht(x) is convex in R++ then
D̄t(W ,H, W̃ , H̃) is given by

atdt

∑
ij

btij(W̃ H̃)ctij

dt−1∑
ij

btij(W̃ H̃)ct−1
ij

×
∑
k

(W̃ikH̃kj)
1−ctW ct

ikH
ct
kj + constant .

4) If both ft(x) and ht(x) are concave in R++ then
D̄t(W ,H, W̃ , H̃) is given by (16).

The three types of auxiliary functions shown above can be
unified into a single formula as

D̄t(W ,H, W̃ , H̃)

=
atctdt
ϕt

∑
ij

btij(W̃ H̃)ctij

dt−1∑
ij

btij(W̃ H̃)ct−1
ij

×
∑
ij

btij(W̃ H̃)ct−1
ij

∑
k

(W̃ikH̃kj)
1−ϕt (WikHkj)

ϕt (17)

where ϕt is defined by (4).

The multiplicative update for Wik is obtained by solving

∂D̄1

∂Wik
(W , H̃, W̃ , H̃) +

∂D̄2

∂Wik
(W , H̃, W̃ , H̃) = 0 (18)

for Wik. For t = 1 and 2, we have

∂D̄t

∂Wik
(W , H̃, W̃ , H̃) = atctdt

(∑
pq

btpq(W̃ H̃)ctpq

)dt−1

×
(
Wik

W̃ik

)ϕt ∑
q

btiq(W̃ H̃)ct−1
iq H̃kq .

Hence the solution to (18) is formally expressed as

Wik = W̃ik

[
−
a2c2d2

(∑
pq b2pq(W̃ H̃)c2pq

)d2−1

a1c1d1

(∑
pq b1pq(W̃ H̃)c1pq

)d1−1

×
∑

q b2iq(W̃ H̃)c2−1
iq H̃kq∑

q b1iq(W̃ H̃)c1−1
iq H̃kq

] 1
ϕ1−ϕ2

. (19)

Similarly, the multiplicative update for Hkj is obtained by
solving

∂D̄1

∂Hkj
(W̃ ,H, W̃ , H̃) +

∂D̄2

∂Hkj
(W̃ ,H, W̃ , H̃) = 0 (20)

for Hkj . For t = 1 and 2, we have

∂D̄t

∂Hkj
(W̃ ,H, W̃ , H̃) = atctdt

(∑
pq

btpq(W̃ H̃)ctpq

)dt−1

×

(
Hkj

H̃kj

)ϕt ∑
p

btpj(W̃ H̃)ct−1
pj W̃pk .
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Hence the solution to (20) is formally expressed as

Hkj = H̃kj

[
−
a2c2d2

(∑
pq b2pq(W̃ H̃)c2pq

)d2−1

a1c1d1

(∑
pq b1pq(W̃ H̃)c1pq

)d1−1

×
∑

p b2pj(W̃ H̃)c2−1
pj W̃pk∑

p b1pj(W̃ H̃)c1−1
pj W̃pk

] 1
ϕ1−ϕ2

. (21)

IV. PROOF SKETCH FOR THEOREM 1

In addition to the three conditions (9)–(11), suppose that
ϕ1 ̸= ϕ2. Then the functions uik and vkj are well-defined and
take nonnegative values for all positive matrices W and H .
Hence, in order to prove Theorem 1, we only need to show
that ϕ1 ̸= ϕ2 under the three conditions.

Lemma 1: If the constants in (2) satisfy (9) and (10) then
ϕ1 > ϕ2.

Proof: Under the assumption (9) the following eight
statements hold true (the proof is omitted due to the limitation
of space).

1) If both f1(x) = a1x
d1 and g1(x) = a1x

c1d1 are
convex in R++ then ϕ1 = c1d1 ≥ 1 holds.

2) If f1(x) is convex and g1(x) is concave in R++ then
ϕ1 = 1 and c1d1 < 1 hold.

3) If f1(x) is concave and h1(x) = a1d1x
c1 is convex

in R++ then c1 ≥ 1, d1 < 1 and ϕ1 ≥ 1 hold.
4) If both f1(x) and h1(x) are concave in R++ then

ϕ1 = 1 and c1d1 < 1 hold.
5) If both f2(x) = a2x

d2 and g2(x) = a2x
c2d2 are

convex in R++ then ϕ2 = c1d1 < 1 holds.
6) If f2(x) is convex and g2(x) is concave in R++ then

ϕ2 = 1 and c2d2 > 1 hold.
7) If f2(x) is concave and h2(x) = a2d2x

c2 is convex
in R++ then ϕ2 = c2 ≤ 1 hold.

8) If both f2(x) and h2(x) are concave in R++ then
ϕ2 = 1 and c2d2 > 1 hold.

From these statements, we easily see that ϕ1 ≥ 1 and ϕ2 ≤ 1
hold under the assumption (9). In the following, we show that
if ϕ1 = ϕ2 = 1 then c1d1 < c2d2 which contradicts (10).

If ϕ1 = 1 then there are four possible cases:

1) Both f1(x) and g1(x) is convex and c1d1 = 1,
2) f1(x) is convex and g1(x) is concave,
3) Both f1(x) and h1(x) is concave,
4) f1(x) is concave, h1(x) is convex and c1 = 1.

In the second, third and fourth cases, the inequality c1d1 < 1
holds from the second, fourth, third statements, respectively,
given above. If ϕ2 = 1 then there are three possible cases:

1) f2(x) is convex and g2(x) is concave,
2) Both f2(x) and h2(x) is concave,
3) f2(x) is concave, h2(x) is convex and c2 = 1.

In the first and second cases, the inequality c2d2 > 1 holds
from the sixth and eighth statements given above. In the third
case, we can prove by contradiction that c2d2 = d2 > 1.
Suppose that d2 < 1. Then either i) a2 > 0 and 0 < d2 < 1

or ii) a2 < 0 and d2 < 0 must hold in order for f2(x) to be
concave. Thus a2c2d2 must be always positive. However, this
contradicts (9).

V. PROOF SKETCH FOR THEOREM 2

We hereafter express (12) and (13) as

W (l+1) = U(W (l),H(l)) ,

H(l+1) = V (W (l+1),H(l))

for simplicity, and define the mapping A : Fϵ → Fϵ as

A(W (l),H(l))

= (U(W (l),H(l)), V (U(W (l),H(l)),H(l))) .

It follows from Zangwill’s global convergence theorem [12]
that Theorem 2 is valid if the following three statements hold
true under the conditions (9), (10), (11) and (15).

1) All points in the sequence {(W (l),H(l))}∞l=0 belong
to a compact set in Fϵ.

2) There exists a function z : Fϵ → R such that
z(A(W ,H)) < z(W ,H) if (W ,H) ̸∈ Sϵ and
z(A(W ,H)) ≤ z(W ,H) if (W ,H) ∈ Sϵ.

3) The mapping A is continuous in Fϵ \ Sϵ.

The second statement can be proved in a similar way as in [9].
Let us next consider the third statement. If the constants in (2)
satisfy (9), (10) and (11) then uik and vkj are continuous in
Fϵ. Also, for any positive constant ϵ, the function max(ϵ, ·)
is continuous in Fϵ. Therefore, the right-hand side of (12) is
continuous in Fϵ because it is the composition of uik and
max(ϵ, ·), and the right-hand side of (13) is continuous in Fϵ

because it is the composition of vkj and max(ϵ, ·).
To prove that the first statement holds true, we make use

of the following lemma.

Lemma 2 (Katayama et al. [13]): Let ϵ be any positive
constant. If a mapping f : [ϵ,∞) → R satisfies

∀x ≥ ϵ, f(x) ≤ cxν

for some c > 0 and ν < 1 then for any initial value x(0) ≥ ϵ
the sequence {x(l)}∞l=0 generated by

x(l+1) = max
(
ϵ, f(x(l))

)
is contained in a closed and bounded set.

By using this lemma, we obtain the following result.

Lemma 3: Let ϵ be any positive constant. If the constants
in (2) satisfy (9), (10), (11) and (15) then for any initial
solution (W (0),H(0)) ∈ Fϵ the sequence {(W (l),H(l))}∞l=0
generated by (12) and (13) is contained in a closed and
bounded set.

Proof: It suffices for us to show that uik and vkj in the
multiplicative update rule described by (12) and (13) satisfies
the conditions of Lemma 2. In the following, we consider
only uik because vkj can be discussed in the same way. First,
because d1 − 1 ≥ 0 and d2 − 1 ≤ 0, we have(∑

pq b2pq(WH)c2pq

)d2−1

(∑
pq b1pq(WH)c1pq

)d1−1

2016 24th European Signal Processing Conference (EUSIPCO)

441



≤

(∑
q b2iq(WH)c2iq

)d2−1

(∑
q b1iq(WH)c1iq

)d1−1

≤
∑

q b
d2−1
2iq (WH)

c2(d2−1)
iq∑

q b
d1−1
1iq (WH)

c1(d1−1)
iq

=
∑
q

bd2−1
2iq (WH)

c2(d2−1)
iq∑

s b
d1−1
1is (WH)

c1(d1−1)
is

≤
∑
q

bd2−1
2iq (WH)

c2(d2−1)
iq

bd1−1
1iq (WH)

c1(d1−1)
iq

. (22)

We also have∑
q b2iq(WH)c2−1

iq Hkq∑
q b1iq(WH)c1−1

iq Hkq

≤
∑
q

b2iq
b1iq

(WH)c2−c1
iq . (23)

From (22) and (23) we have

uik(W ,H)

≤ Wik

[
−a2c2d2
a1c1d1

∑
q

bd2−1
2iq (WH)

c2(d2−1)
iq

bd1−1
1iq (WH)

c1(d1−1)
iq

×
∑
q

b2iq
b1iq

(WH)c2−c1
iq

] 1
ϕ1−ϕ2

= Wik

[
−a2c2d2
a1c1d1

∑
q

(
bd2−1
2iq (WH)

c2(d2−1)
iq

bd1−1
1iq (WH)

c1(d1−1)
iq

×
∑
s

b2is
b1is

(WH)c2−c1
is

)] 1
ϕ1−ϕ2

≤ Wik

[
−a2c2d2
a1c1d1

∑
q

(
bd2−1
2iq (WH)

c2(d2−1)
iq

bd1−1
1iq (WH)

c1(d1−1)
iq

×b2iq
b1iq

(WH)c2−c1
iq

)] 1
ϕ1−ϕ2

≤ Wik

[
−a2c2d2
a1c1d1

∑
q

bd2
2iq

bd1
1iq(WH)c1d1−c2d2

iq

] 1
ϕ1−ϕ2

≤ Wik

[
−a2c2d2
a1c1d1

∑
q

bd2
2iq

bd1
1iq(ϵWik)c1d1−c2d2

] 1
ϕ1−ϕ2

= W
1− c1d1−c2d2

ϕ1−ϕ2

ik

[
−a2c2d2
a1c1d1

∑
q

bd2
2iq

bd1
1iqϵ

c1d1−c2d2

] 1
ϕ1−ϕ2

.

Because c1d1 − c2d2 is positive due to assumption (10) and
ϕ1 − ϕ2 is also positive due to Lemma 1, the constant 1 −
(c1d1−c2d2)/(ϕ1−ϕ2) is less than 1. In addition, the constant[

−c2e2l2
c1e1l1

∑
q

bd2
2iq

bd1
1iqϵ

c1d1−c2d2

] 1
ϕ1−ϕ2

depends neither on W nor on H . Therefore, fik satisfies the
conditions of Lemma 2.

VI. CONCLUSION

For a class of constrained optimization problems which
include many NMF optimization problems as special cases, we
have given a sufficient condition under which a multiplicative
update rule can be obtained. We have also given a sufficient
condition under which a modified version of the multiplicative
update rule has the global convergence property. A future
problem is to extend the results of this paper to the case where
the objective function has more than two terms.
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