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Abstract – In this paper we study the problem of estimat-

ing the unknown delay(s) in a system where we receive a lin-

ear combination of several delayed copies of a known transmit-

ted waveform. This problem arises in many applications such

as timing-based localization or wireless synchronization. Since

accurate delay estimation requires wideband signals, traditional

systems need high-speed AD converters which poses a significant

burden on the hardware implementation. Compressive sensing

(CS) based system architectures that take measurements at rates

significantly below the Nyquist rate and yet achieve accurate de-

lay estimation have been proposed with the goal to alleviate the

hardware complexity. In this paper, we particularly discuss the

design of the measurement kernels based on a frequency-domain

representation and show numerically that an optimized choice

can outperform randomly chosen functionals in terms of the de-

lay estimation accuracy.

Keywords: Compressive sensing, synchronization, delay estimation,

measurement matrix design

1. INTRODUCTION

Time delay estimation is a fundamental challenge arising in many

applications such as wireless communications [1], radar [2], local-

ization [3], sensor networks [4], and many others. A wide range of

delay estimation techniques have been proposed, see, e.g., [5] for

a survey for time delay estimation in linear dynamic systems. In

this paper, we treat the special case of estimating the delay of a sig-

nal with a known pulse shape from a noisy superposition of several

delayed copies. Such problems occur in synchronization of wire-

less sensor networks [6], TDOA-based localization [7] or wideband

channel estimation [8] due to the multipath channel.

The complexity bottleneck in these systems is the high data rate

from the high-speed AD converters that are required to sample the

wideband signals which are used to ensure a high resolution in time.

However, since the pulse shape is known, the actual rate of (un-

known) information in the received signals is low. Therefore, it has

been proposed to apply compressed sensing (CS) to reduce the hard-

ware complexity while maintaining a high precision. In [9, 10], a

framework for sampling time-delayed signals is presented based on

a union of subspaces approach [11]. The authors derive sufficient

conditions on the transmitted pulse and the sampling functions in

order to ensure perfect recovery of the channel parameters in the ab-

sence of noise, which includes conditions on the minimal required

sampling rate.

Considering concrete choices of the low rate sampling kernels,

it is often suggested in the CS literature to use random kernels which

This work was partially supported by the Carl-Zeiss Foundation under
the postdoctoral scholarship project “EMBiCoS”.

are incoherent with any basis and so achieving informative measure-

ments even at low rates. Though randomly chosen kernels represent

a simple and generic approach, it is known that they do not provide

the optimal robustness against noise. Only recently, the optimiza-

tion of the measurement kernels has been investigated [12, 13, 14].

In particular, [12] studies the optimization of a discrete measurement

matrix in time domain and [13] consider a continuous (sum-of-sincs)

kernel in time domain whose output that is sampled at a sub-Nyquist

rate. Both use criteria inspired by the Bayesian Cramér-Rao bound

to optimize the kernels. In [14], the measurement matrix is opti-

mized such that for a given (overcomplete) basis, the sensing matrix

has a small average coherence.

In this paper, we propose another optimization based design for

the measurement kernels of the compressed sampling based time de-

lay estimation architectures. We consider an architecture based on

a bank of K continuous-time periodic functionals that are sampled

once per period. We show that their Fourier-domain representation

allows to optimize these functions based on a finite number of coef-

ficients. We demonstrate numerically that the optimized CS kernels

outperform a randomly chosen one in terms of the delay estimation

accuracy.

2. SYSTEM MODEL

The time delay estimation problem can be formalized as follows.

A transmitter sends a signal s(t) to allow a receiver (or multiple

receivers) that know s(t) to synchronize themselves. For simplicity,

we assume that s(t) is tp-periodic, i.e., s(t) = s(t + tp). Periodic

synchronization signals are common, e.g., in GNSS [15] and UWB

Radar applications [16]. They allow receivers to keep track of the

synchronization over time and to average over multiple periods. For

the problem at hand, another advantage is that since these signals are

also band-limited to a certain bandwidth B, they can be completely

described by a finite number of M = B · tp coefficients. Therefore,

we can write s(t) as

s(t) =
∑

m∈M

cs[m]e
2πm t

tp (1)

where M is the set of points in frequency where s(t) is non-zero1

with |M| =M .

Due to the multipath nature of wireless propagation channels,

the receiver observes a weighted sum of delayed copies of s(t), i.e.,

1We employ a complex representation of all signals, which can refer to

the complex low-pass domain where M = {−M
2

+ 1, . . . , M
2
} or analytic

signals where only the positive half of the spectrum is considered.
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Fig. 1. Compressive receiver architecture: the signal is multiplied

with K periodic waveforms pk(t) and the result is sampled once per

period in each branch.

the received signal can be written as

x(t) =
L∑

ℓ=1

αℓs(t− τℓ) + w(t), (2)

where αℓ and τℓ represent the complex amplitude and delay of the

ℓ-th propagation path for ℓ = 1, 2, . . . , L, respectively, and w(t) is

the additive white Gaussian measurement noise. Note that since s(t)
is tp-periodic so is x(t) (besides for the additive noise).

We employ a compressive sampling architecture similar to [9],

which is depicted in Figure 1. After an initial downconversion stage

to remove the carrier frequency2, instead of sampling the received

signal x(t) directly, the receiver performs a bank of analog multi-

plications with the functions pk(t), k = 1, 2, . . . ,K, followed by a

sampling with a lower rate to yield the coefficients ψk. Since x(t)
is periodic, it is convenient to choose pk(t) such that they are also

tp-periodic. The overall sampling rate of the receiver is then equal

to K
tp

= K
M

· B which means that the compression factor relative to

Nyquist sampling is equal to K
M

. Note that each of the K ADCs op-

erates at a rate B
M

, i.e., a factorM times lower than in a conventional

system.

It is important to note that since our receiver is linear and x(t)
is a linear combination of delayed copies of s(t), it is sufficient to

describe the sampling of one delayed signal s(t− τ). Once a math-

ematical model for this has been obtained, the sampled version of

x(t) follows from a trivial linear combination.

Therefore, if we let x(t) = s(t − τ), the k-th sample ψk for

k = 1, 2, . . . ,K is given by

ψk(τ) =
1

tp

∫

tp

pk(t)
∗ · s(t− τ)dt. (3)

As both, pk(t) and s(t) are periodic, they can be expressed using a

discrete representation in the Fourier domain, namely

pk(t) =
∞∑

m=−∞

cp,k[m]e
2πm t

tp . (4)

With the help of (4) and (1), we can now rewrite (3) in frequency

2The transmitter sends the bandwidth-B signal by modulating it onto a
carrier frequency fc, which is removed at this stage. The signal model is
described entirely in the complex low-pass domain.

domain [9]. For clarity, let us begin with τ = 0 to obtain

ψk(0) =
1

tp

∫

tp

(
∞∑

m1=−∞

c
∗
p,k[m1]e

−2πm1
t
tp

)

·
(
∑

m2∈M

cs[m2]e
2πm2

t
tp

)

dt

=
∞∑

m1=−∞

∑

m2∈M

c
∗
p,k[m1]cs[m2]

1

tp

∫

e
−2πm1

t
tp e

2πm2
t
tp dt

︸ ︷︷ ︸

tp·δ[m1−m2]

=
∑

m∈M

c
∗
p,k[m]cs[m]. (5)

Equation (5) shows, not surprisingly, that only the M coefficients of

pk(t) that coincide with the spectral support of s(t) contribute to the

coefficients ψk. Therefore, if the hardware realization allows it, they

should be chosen such that they are bandlimited to B as well3.

Introducing the short hand notations cs ∈ C
M×1 and cp,k ∈

C
M×1 for the M coefficients that cs[m] and cp,k[m] in (5) we then

have ψk(0) = cHp,k · cs. Moreover, it is now easy to carry out the

same computation for τ 6= 0. We obtain

ψk(τ) =
∑

m∈M

c
∗
p,k[m]e

−2πm τ
tp cs[m]

= cHp,k · diag{d(τ)} · cs, (6)

= cHp,k · diag{cs} · d(τ), (7)

where we have defined the vector d(τ) =
[

e
−2πm τ

tp

]

m∈M
.

Based on (7), the entire vector of observations ψ(τ) ∈ C
K×1

can be described as

ψ(τ) = [ψ1(τ), . . . , ψK(τ)]T = CH
p · diag{cs} · d(τ), (8)

where Cp = [cp,1, . . . , cp,K ] ∈ C
M×K contains the coefficients

of all the K sequences pk(t). Equation (8) describes the observed

output vector for a single delayed copy of s(t). Since our receiver

is linear, the observed vector y ∈ C
K×1 for the input signal x(t)

according to (2) is given by

y =
L∑

ℓ=1

αℓψ(τℓ) + w̃, (9)

where w̃ ∈ C
K×1 is the effective noise vector.

3. DELAY ESTIMATION PROCEDURE

3.1. Gridded sparse recovery based estimator

Equation (9) shows that our observation vector can be modeled as a

weighted sum of L terms ψ(τℓ) under additive noise. Since ψ(τ) is

known to the receiver, this suggests that the delays can be recovered

from y if L < K. The difficulty in estimating the delays lies in

the fact that they can take any value from a continuous domain. A

common and very simple approach to tackle such problems is to

discretize the parameter space into an N -point sampling grid in τ

3Compressive sampling architectures that use PN-sequences for the pk(t)
have been proposed, e.g., the modulated wideband converter [9]. Although
these are not strictly bandlimited to B, their practical advantage is that they
can be realized in hardware up to very high switching speeds.
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referred to as τ
(G)
n , n = 1, 2, . . . , N . In the special case of a uniform

sampling grid, we have τ
(G)
n = (n − 1) · ∆τ , n = 1, 2, . . . , N

where ∆τ =
tp
N

. Based on the sampled delays, we can define a

basis Ψ ∈ C
K×N according to

Ψ =
[

ψ
(

τ
(G)
1

)

, ψ
(

τ
(G)
2

)

, . . . , ψ
(

τ
(G)
N

)]

. (10)

Since the delays τℓ can take any value, they will not be on any pre-

defined sampling grid almost surely. However, it has been shown

that if the sampling of the grid is not too coarse, one can still use

the fact that y is approximately sparse in Ψ and apply suitable grid

offset estimation procedures to correct for the mismatch between the

grid points and the actual delays, cf. e.g., [17] for a comparison of

interpolation strategies in this setting. Therefore, to facilitate the fur-

ther explanations we now assume that all the delays τℓ were exactly

on the sampling grid, i.e., τℓ = τ
(G)
dℓ

for some dℓ ∈ {1, 2, . . . , N}.

This allows us to write y as

y = Ψ ·α+ w̃, (11)

where α ∈ C
N×1 contains αℓ at the indices dℓ for ℓ = 1, 2, . . . , L

and zeros otherwise. In other words, besides for the noise, y is L-

sparse in Ψ. The delay estimation problem can then be cast as a

sparse recovery problem, e.g.,

min ‖α‖1 s.t. ‖y −Ψ ·α‖22 ≤ σ
2
, (12)

where σ2 is an estimate of the noise power. Note that it has been

shown in [9] that K ≥ 2L is sufficient to recover all the delays from

y in the noise-free case.

3.2. Correlation based estimator

A simpler estimator is inspired by traditional, Nyquist-sampling

based systems which simply correlate the observed signal with the

known waveform and then estimate the location of the peak. Note

that if there is only one path (L = 1) or if paths are very well sepa-

rated (by more than the width of the correlation peak), this method

is in fact optimal. Along these lines, the correlation based estimator

in our setting is defined as

τ̂ = argmax
τ

∣
∣
∣
∣

ψ(τ)H · y
ψ(τ)H ·ψ(τ)

∣
∣
∣
∣
, (13)

where the peak search is not limited to a prespecified grid. It is

instructive to expand (13) for the special caseL = 1 where we obtain

τ̂ = argmax
τ

α1 ·
ψ(τ)H ·ψ(τ1)
ψ(τ)H ·ψ(τ)
︸ ︷︷ ︸

ρ(c)(τ)

+
ψ(τ)H · w̃
ψ(τ)H ·ψ(τ) . (14)

Equation (14) shows that we are essentially finding the peak in the

“compressed” correlation function ρ(c)(τ).

4. MEASUREMENT DESIGN

The previous sections have shown how the compressive-sensing

based receiver can be employed for delay estimation. As we have

seen, it provides a sparsifying basis ψ(τ) for the signal and the

atoms ψ(τ) depend on the choice of the signal s(t) (through the

vector cs) and the sampling functions pk(t) (through the matrix

Cp). In this section we shed some light on their proper choice to

obtain a good synchronization performance.

An “ideal” choice of ψ(τ) would satisfy the conditions

ψ(τ1)
H ·ψ(τ2) ≈

{

0 τ1 6= τ2

const τ1 = τ2,
(15)

where the first condition asks for good cross-correlation properties

between different delays and the second condition guarantees that

the measurement is equally sensitive to all possible delays. This

choice will ensure that the compressed correlation function ρ(c)(τ)
introduced in (14) is close to the ideal delta function. At the same

time, it is also beneficial for the gridded sparse recovery based esti-

mator since the first condition asks for low correlation between the

columns of the sensing matrix Ψ (i.e., a low coherence) and the sec-

ond condition guarantees that all columns have similar norms (to

achieve a uniform sensitivity for all possible delays).

To measure how well a given matrix Φ satisfies (15), we can

formulate an error measure of the form e(Φ, τ1, τ2) = (ψ(τ1)
H ·

ψ(τ2) − C · δ[τ1 − τ2]) · ωτ1,τ2 where ωτ1,τ2 ∈ R≥0 is a weight

function which allows to trade the weight between certain (τ1, τ2)
regions, e.g., between uniform sensitivity (τ1 = τ2) and low cross-

correlation (τ1 6= τ2). However, since it is difficult to minimize the

error over the continuous variables τ1 and τ2 we consider it only on

the N -point sampling grid introduced earlier. This leads to an error

matrix E(Φ) ∈ R
N×N given by

E(Φ) =
[

e(Φ, τ (G)
n1

, τ
(G)
n2

)
]

(n1,n2=1,2,...,N)

=
(

Ψ
H ·Ψ− C · IN

)

⊙Ω, (16)

=
(

D
H · diag{c∗s} ·Cp ·CH

p · diag{cs} ·D − C · IN
)

⊙Ω,

=
(

D
H ·
([

Cp ·CH
p

]

⊙
[

c
∗
s · cTs

])

·D − C · IN
)

⊙Ω,

where we have used (8) to rewrite Ψ and defined D = [d(τ
(G)
1 ),

. . . , d(τ
(G)
N )] ∈ C

M×N . Moreover, ⊙ in (16) denotes the

Hadamard-Schur (elementwise) product and Ω contains the weights

ωτ1,τ2 . Based on (16), the quality of Ψ can be measured via an

appropriate norm of E. For instance, minimizing the (weighted)

average squared error corresponds to minimizing the squared Frobe-

nius norm of E, whereas minimizing the maximal error is achieved

by minimizing ‖vec{E}‖
∞

. For simplicity, let us consider a Frobe-

nius norm, leading to the following criterion forCp

min
Cp

∥
∥
∥

[

D
H ·
([

Cp ·CH
p

]

⊙
[

c
∗
s · cTs

])

·D − C · IN
]

⊙Ω

∥
∥
∥
F
.

(17)

Note that the problem (17) belongs to the class of weighted low-

rank approximation problems which have been shown to be NP-hard

[18] and do not admit a closed-form solution in general. However,

iterative methods with some performance guarantees exist [19].

Note that in the special case Ω = 1N×N , problem (17) is equiv-

alent to coherence minimization which has been studied, e.g., in

[14]. Moreover, due to its structure we can actually solve it in closed

form. From [20], we have the following theorem:

Theorem 1. For a row-orthogonal matrixA ∈ C
M×N and a square

Hermitian matrix T ∈ C
N×N , consider the following optimization

problem over matrices Φ ∈ C
m×M with m < M

argmax
Φ

∥
∥
∥A

H ·ΦH ·Φ ·A− T
∥
∥
∥

2

F
. (18)
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Fig. 2. Relative RMSE of the delay τ1 (in units of tp) vs. SNR for

K = 5 branches and M = 20 spectral lines.
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Fig. 3. Histogram of the relative root squared error of τ1 for K = 5,

M = 20, and an SNR of 13 dB.

Then, a matrix Φ maximizes (18) if and only if ΦH ·Φ = Sm, where

Sm is a rank-m approximation of the matrix S = A · T · AH,

obtained by setting all but the dominant m eigenvalues of S to zero.

Applying Theorem 1 to (17) shows that Cp is optimal with re-

spect to (17) if and only if it can be written as

Cp =
√
C · diag{c∗s}−1 ·Q, (19)

where Q ∈ C
M×K is an arbitrary unitary matrix. However, this

result is not very useful since it leaves a large space of possible so-

lutions (any properly scaled row-orthogonal matrix) that achieve the

same minimum in the cost function.

Therefore, instead of using (19), we choose to solve (17) using

numerical optimization methods. Note that since the measurement

matrix design is performed off-line once only, the computational

complexity of solving this problem is not a critical issue.

5. NUMERICAL RESULTS

In this section we present some numerical results to show the perfor-

mance of the proposed CS-based architecture for delay estimation.

The observed signal is generated according to (9). The transmit sig-

nal is chosen according to cs[m] = eϕm where ϕm is drawn from

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Delay τ/t
p

A
m

p
lit

u
d

e

 

 

True
Reference Low Bandwidth
Compressed
Reference Full Bandwidth

Fig. 4. Estimation of a multipath channel with L = 6 paths for

K = 10, M = 20, SNR = 30 dB

a uniform distribution in [0, 2π). In other words, the transmitter dis-

tributes its power evenly across frequency, which corresponds to a

sinc-like pulse in the time domain. The noise samples in the noise

vectorw are drawn from a zero-mean circularly symmetric complex

Gaussian distribution with N0 = 1
SNR

.

The coefficients Cp are modeled as eϕm,k where ϕm,k are

drawn from a uniform distribution in [0, 2π) for the random ap-

proach and used as optimization variables in the proposed optimized

choice ofCp. The latter is found by solving (17) via Matlabs numer-

ical optimization toolbox. The weight matrix is chosen according to

Ω = (1 − ρ) · IN + ρ · 1N , where ρ ∈ R[0,1] allows to adjust this

trade-off: values close to zero put more weight on the main diago-

nal (for uniform sensitivity) whereas values closer to one shift the

weight to the off-diagonal elements (for low cross-correlation). The

results shown here are obtained for ρ = 0.5. Finally, the constant C
is set to4 K ·M .

Figure 2 depicts the result for a system with K = 5 branches

that uses M = 20 spectral lines (i.e., the compression rate is 4).

The relative root mean square delay estimation error of the estima-

tor (14) (in units of tp) is estimated over 100’000 Monte Carlo trials.

A single path scenario is chosen where α1 = 1 and τ1 is drawn

randomly from [0, tp). Since we have a single path, the correlation-

based estimator according to (13) is used to estimate the delays. For

comparison, the achievable accuracy of a traditional system that uses

no compression but a full-rate ADC is also shown (“Reference Full

Bandwidth”) as well as the performance of a system that uses 1/4 of

the bandwidth (“Reference Low Bandwidth”). The results demon-

strate that the optimized measurement kernel outperforms the ran-

domly chosen one, in particular for lower SNRs. This behavior is

mainly due to the outliers that occur due to the sidelobes in the

compressed correlation function. Moreover, the CS-based system

achieves an accuracy better than a Nyquist system operating with a

reduced bandwidth / sampling rate.

To shed further light on this aspect, Figure 3 depicts the esti-

mated complementary cumulative distribution function (CCDF) of

the RMSE for the same simulation at an SNR of 13 dB. We can see

that the random choice of the measurement kernels is more prone

to outliers. This behavior becomes even more pronounced for lower

SNRs.

Figure 4 shows the estimation result for a L = 6 path channel

for K = 10, M = 20, and an SNR of 30 dB, using the estimator

from (12). The true value of delays and amplitudes are indicated

by the markers labeled “True” and compared to the proposed com-

pressed approach (using an optimized matrix for ρ = 0.5) and the

low/full bandwidth reference. The result shows that the compressed

approach finds all the taps while the low bandwidth version misses

some peaks (and finds comparably strong spurious ones).

4Due to the assumption that cs and Cp have constant magnitude, we can

show that trace{ΨH
Ψ} = M KN regardless of the angles in cs and Cp.
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6. CONCLUSIONS

In this paper we investigate a system architecture for delay estima-

tion via Compressed Sensing (CS). We propose to use a bank of K
periodic functions pk(t) that multiply the received signal and are

sampled once per period. Thereby, the effective sampling rate is

reduced by a factor which depends on the period, the bandwidth,

and the number of channels K. We then discuss the design of the

functions pk(t) based on their frequency domain representation. We

propose an approach that directly optimizes the shape of the auto-

correlation function in terms of the choice of pk(t) and demonstrate

that it outperforms a random choice in terms of the delay estima-

tion accuracy. Note that other criteria could be considered as well,

such as Cramér-Rao Bounds. This approach will be further studied

in future work.
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