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Abstract—To emulate the human perception in quality assess-
ment, an objective metric or assessment method is required,
which is a challenging task. Moreover, assessing the quality of
speech without any reference or the ground truth is altogether
more difficult. In this paper, we propose a new non-intrusive
speech quality assessment metric for objective evaluation of
speech quality. The originality of proposed scheme lies in using
deep autoencoder to extract low-dimensional features from a
spectrum of the speech signal and finds a mapping between
features and subjective scores using an artificial neural network
(ANN). We have shown that autoencoder features capture noise
information in a better way than state-of-the-art Filterbank
Energies (FBEs). Quantification of our experimental results
suggests that proposed metric gives more accurate and correlated
scores than an existing benchmark for objective, non-intrusive
quality assessment metric ITU-T P.563 standard.

I. INTRODUCTION

Speech quality assessment is very important in many ap-
plications including telephone networks, voice over Internet,
multimedia applications, etc. The best way to assess the quality
of speech is to take the opinion of the human listeners.
To do so, listening tests are conducted which serves as a
subjective quality assessment measure. However, some fun-
damental difficulties, including cost, time consumption and
in some cases, the reliability of the test, make subjective
tests unsuitable for many applications which require in-service,
real-time or in-process quality assessment. Hence, to overcome
these limitations, there is a requirement of a reliable objective
measure to assess the speech quality. Objective speech quality
assessment has attracted researchers over the past years [1]–
[8].

The aim of objective quality evaluation is to find a replace-
ment for human judgment of perceived speech quality. Objec-
tive evaluation techniques are less complex, less expensive in
terms of resources and time and give more consistent results.
Objective evaluation techniques are categorized in two ways,
namely, intrusive and non-intrusive. Intrusive assessments are
based on waveform comparison wherein reference speech
signal is available for comparison. On the other hand, non
intrusive quality assessment (also known as single-ended, no-
reference or output-based quality assessment) is performed
using single speech waveform, without any reference or the
ground truth. Intrusive methods are more straightforward, less
complex and more accurate than non-intrusive ones. However,
in many practical scenarios such as wireless communica-

tion, voice over IP (VoIP) and other in-service applications
requiring monitoring of speech quality, intrusive methods
cannot be applied due to unavailability of reference speech
signal. In such cases, it is necessary to have a reliable non-
intrusive method for quality assessment. Excellent summary
of the principles of existing quality estimation models, their
advantages, limitations and future directions is given in [9].

An early attempt towards non-intrusive assessment of
speech based on spectrogram analysis is presented in [1]. The
study reported in [2] uses Gaussian Mixture Models (GMMs)
to create artificial reference model to compare degraded speech
signals; whereas in [3], speech quality is predicted by Bayesian
inference and minimum mean square estimation (MMSE)
based on trained GMMs. In [4], a perceptually motivated
speech quality assessment algorithm based on temporal enve-
lope representation of speech is presented. A low-complexity,
non-intrusive speech quality assessment method based on
commonly used speech coding parameters such as spectral
dynamics is presented in [5]. Different features extracted from
speech have been detected to be useful for speech quality
assessment. Spectral dynamics, spectral flatness, spectral cen-
troid, variance, pitch and excitation variance was used for
quality prediction in [5]. The authors in [10] used perceptual
linear prediction (PLP) coefficients for quality assessment. A
method for speech quality assessment using temporal envelope
representation of speech was proposed in [4]. A non-intrusive
algorithm for quality assessment in VoIP is presented and
studied in [11]. In [12], authors posed quality estimation
as a regression problem and used average Mel Frequency
Cepstral Coefficients (MFCCs) to find mapping to subjective
scores using support vector regression (SVR). Similarly, [13]
examined use of mean and variance of filterbank energies for
mapping using SVR in a similar fashion.

Recently, deep learning methods are gaining popularity
for feature extraction from raw speech data. Autoencoder
is such network which uses Deep Neural Network (DNN)
or Restricted Boltzmann Machine (RBM) to extract low-
dimensional information from high-dimensional raw data
[14]–[17]. Autoencoder has been widely used for automatic
speech recognition (ASR) systems for noisy or reverberant
conditions. In [18] and [19], authors used autoencoder as
de-noising front-end for such ASR task. Autoencoder was
used to find the mapping between noisy speech spectrum and
clean speech spectrum in [20] for noise reduction in ASR
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system. Autoencoder features were also used for speech en-
hancement application in [21]. For speech coding, autoencoder
was used to encode speech spectrum in [22]. The popularity
of autoencoder features in denoising of speech spectrum and
features suggests that they are able to capture information
about presence or absence of noise in the speech signal.
Moreover, in [22] it is shown that speech spectrum can be
reconstructed using features learned by an autoencoder. This
ability of autoencoder features makes them suitable for quality
assessment since they are able to capture underlying spectral
information. In this paper, the problem of speech quality as-
sessment is posed as a regression problem, same as previously
done in [12] and [13]. However, we have used autoencoder
features as the acoustic features and used an artificial neural
network (ANN) as a regression model. ANN was chosen
due to its universal approximation abilities and need of least
tuning of parameters. We have shown that autoencoder features
provide more variability in feature vectors for speech files
having different types and amount of noise. Moreover, they
are able to reconstruct speech spectrum more precisely than
filterbank energies. These properties of autoencoder features
suggest that they capture noise information in a better way
than MFCC or filterbank energies.

II. AUTOENCODER

A. Basic Autoencoder

Autoencoder is an artificial neural network (ANN) with a
bottleneck structure in hidden layers. A basic autoencoder
structure is shown in figure 1. It is used to learn a low-
dimensional representation of input data which is originally of
high-dimension. Autoencoder consists of two blocks, namely,
encoder and decoder. The encoding part will represent the
high-dimensional data into low-dimension while the decoder
will convert that low-dimensional representation into a high-
dimensional output feature. Mathematically, encoding opera-
tion can be represented as follows:

y = fθ = s(Wx+ b), (1)

where y is the low-dimensional feature vector representation
and θ = {W,b}. W and b represents weights and biases of
network, respectively. s is a nonlinear activation function. At
the decoding stage, the low-dimensional representation y is
mapped back to high-dimensional representation z using the
following formula:

z = gθ′ = s(W′y + b′), (2)

where θ′ = {W′,b′}. Hence, the output of network can be
seen as function of {θ , θ′}, i.e., z = gθ′(fθ(x)). These
parameters are optimized such that output of the network z
is as close as possible to input x and maximizes P (x|z).
Optimization is done using minimization of mean square error
(MSE) between target x and network output z. Autoencoder
can be made deep by inserting more encoding and and
decoding layers. More details regarding training of an deep
autoencoder can be found in [17].

Fig. 1. General architecture of an autoencoder.

III. ANALYSIS OF AUTOENCODER FEATURES UNDER THE
INFLUENCE OF NOISE

A. Analysis in terms of feature variability

Figure 2 shows autoencoder features and Mel filterbank
energies for clean and noisy speech utterance along with
the corresponding spectrum. It can be observed that both
features get affected under the influence of noise present in
speech signal. It can be seen from figure 2 (d) that the noise
affects almost all the frequency components of the spectrum.
While filterbank energies are able to capture the noise present
in speech spectrum, each coefficient of filterbank energies
captures information about noise present in one particular band
of frequencies. On the other hand, it can be seen from figure 1
that each autoencoder feature captures information or variation
in all the frequency regions. This happens due to the fact that
every unit in subsequent layers of autoencoder is connected
with all units of the previous layer. Hence, units in subsequent
layers are forced to capture the information of all units in
the previous layer. Thus, almost all autoencoder features get
affected due to the noise present in all frequency components.
This property makes them more suitable for quality assessment
under the influence of noise.

Figure 3 shows mean features for clean and noisy speech
with different amount of noise. The only effect of noise on fil-
terbank energies is their average value increase with increasing
amount of noise in speech. However, each autoencoder feature
gets affected differently in the presence of different amount of
noise. Hence, the autoencoder feature vector for the different
amount of noise will be quite different in shape and value.
Figure 4 shows average autoencoder features and filterbank
energies having different Mean Opinion Scores (MOS). The
features are extracted for the same utterance enhanced by
different enhancement algorithms. Figure 4 (b) shows that
if there is a large difference in MOS values then filterbank
energies corresponding to that speech signals will have more
difference in mean values. However, if the difference between
MOS of speech files having different conditions is small, then
the difference between their corresponding filterbank energies
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Fig. 2. Plots of (a) clean speech spectrogram, (b) its autoencoder features
and (c) filterbank energies. similar plots for noisy speech having car noise of
5 dB SNR are shown in (d), (e) and (f).

Fig. 3. Average (a) autoencoder features and (b) filterbank energies of 20
speech files with different amount of babble noise. Dotted circles indicate
features which vary more under the influence of additive noise.

is small and ambiguous. On the other hand, autoencoder
features show different behavior than filterbank energies. Many
of the autoencoder features show little difference for same
utterance with different perceptual quality. However, finer
details about the perceptual quality of the speech signal is
reflected in some of the autoencoder features. These features
are shown with dotted circles in figure 4 (a). The clue about
the perceptual quality can be found in these features.

B. Analysis in terms of reconstruction ability

Figure 5 shows the spectrum of clean as well as noisy
speech, and reconstructed spectrum using filterbank energies
and autoencoder features. The spectrum using filterbank en-
ergies was reconstructed using method shown in [23]. By
observing reconstructed spectrum, it is evident that autoen-
coder features are able to reconstruct both clean and noisy
speech spectrum in a better way than filterbank energies.
To support this observation, Log Spectral Distortion (LSD)
between original spectrum and reconstructed spectrum is
calculated for clean as well as noisy speech signals. The
average LSD for 30 clean and noisy utterances was taken.

Fig. 4. Average (a) autoencoder features and (b) filterbank energies of 20
speech files with different amount of babble noise. The dotted circles show
autoencoder features that vary more for different perceptual quality.

Fig. 5. (a) Speech spectrogram and reconstructed spectrogram using (b)
autoencoder features and (c) filterbank energies for clean speech. Similar plots
in (d), (e) and (f) for noisy speech having babble noise of 15 dB SNR. Dotted
circles represent high frequency regions.

The LSD in case of clean speech utterances was 1.2318
and 3.3918 dB using autoencoder features and filterbank
energies, respectively. In case of noisy speech with 15 dB
SNR (additive babble noise) the LSD was 1.021 and 3.3614
dB for autoencoder features and filterbank energies, respec-
tively. The effect of better reconstruction is more evident in
high-frequency regions. Autoencoder features capture high-
frequency variations more precisely than filterbank energies.
This is due to the fact that at high-frequency, the bandwidth
of Mel-filterbank is high. Hence, higher frequency filterbanks
will contain average information of a wideband, which is not in
the case of autoencoder features. As discussed in the previous
Section, each autoencoder feature contains information about
all frequency components. Hence, they are able to reconstruct
speech spectrum in a much better way. This fact suggests that
autoencoder features capture more information about speech
spectrum than filterbank energies.
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Fig. 6. (a) RMSE, (b) CP and (c) Cs between predicted scores and actual subjective scores using proposed method, filterbank energies and ITU-T P.563
standard for test 1.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

All experiments were performed on NOIZEUS database
[24]. The database has speech files which were corrupted
by different kind (and amount) of noise. It also had speech
files which were enhanced by different noise suppression
algorithms. The speech files were corrupted by four types
of noise, namely, babble, car, street and train with two
SNR levels 5 and 10dB. The noise suppression algorithms
fall under four different classes, namely, spectral subtraction,
subspace, statistical model-based, and Wiener algorithms. A
complete description of these algorithms can be found in [6],
[24]. Subjective evaluation of the speech files was performed
according to ITU-T Recommendation P.835 [6], [25]. Both
autoencoder features and filterbank energies were extracted
from this database. The performance comparison of the both
features was done for 40-D (dimensional) features. To extract
autoencoder features from FFT spectrum, deep autoencoder
was used. The architecture of deep autoencoder was 513-250-
40-250-513, meaning 513 units in the first layer, 250 units
in the second layer and so on. All units had sigmoid as
nonlinearity in all the layers. To demonstrate the ability of
autoencoder features to capture general spectral information,
autoencoder was trained only using 150 files which were not
used for further experiments. Mel filterbank energies of same
dimensions were extracted from speech files.

To find the mapping between features extracted from speech
and their subjective score, artificial neural network (ANN)
with single hidden layer was used. The total number of hidden
units in ANN was 350 which was selected using validation
data. The network was regularized using standard weight
decay method to prevent over-fitting due to small database
size. Although the total of 1792 speech files was available
in the database, for comparison between objective measure
and subjective score a usual way is to compare per-condition
MOS with the per-condition average objective score [25]. By
including noisy speech files and their enhanced versions using
13 different algorithms, total 14 algorithms were available.
Hence, total 112 conditions (= 14 algorithms × 2 SNR levels
× 4 noise types) were available in database with per-condition
MOS. In order to test the robustness of proposed approach
against the data-dependency, data was divided into training and
testing dataset using different partitions. In total, we evaluated

the performance of proposed metric under 3 different test
conditions. In the first test, 8-fold cross-validation was used.
Data was divided into 8 parts out of which 7 parts were used
for training and 1 part for testing. Experiments were repeated
till all 8 parts were used for testing. Results of test 1 are shown
in figure 6. In second test, data was partitioned according
to different types of noise added. Speech files for 3 noise
types were kept for training and 1 noise type was used for
testing. Experiments were repeated till all noise conditions
were used for testing. In test 3, we divided the data according
to noise suppression algorithm. Similar experiments were done
as test 2 in this case. Tabel I shows the results for test 2 and
test 3.

B. Results and discussions

To evaluate the performance, three common criteria was
used: Pearson linear correlation coefficient Cp (for prediction
accuracy), Spearman rank order correlation coefficient Cs
(for prediction monotonicity) and Root Mean Squared Error
(RMSE) between predicted objective score and subjective
scores [6]. For an ideal match between the objective and
subjective scores, Cp=Cs = 1 and RMSE= 0. Moreover, it is
suggested in [7] that to eliminate the offset and non-linearity
between objective scores and subjective score, it is advisable
to use 3rd order polynomial mapping between objective and
subjective scores. All results are shown with and without
polynomial mapping.

Figure 6 shows RMSE, Cp and Cs calculated for both
autoencoder features and filterbank energies for test 1. We also
compared our results with ITU P.563 standard [7], which is a
standard objective measure for non-intrusive speech quality
assessment. Cp and Cs are shown with 95 % confidence
intervals. Figure 6 clearly suggests that autoencoder features
give more powerful mapping than filterbank energies with
identical experimental conditions. Objective scores predicted
using autoencoder features are more accurate as well as
more correlated with actual subjective scores. These results
are in coherence with our analysis of autoencoder features.
Moreover, the overlap between 95 % confidence intervals of
Cp and Cs in case of P.563 and proposed method is very less.
For Cp, it is zero. Hence, it can be said that proposed method
gives objective scores which are nearer to actual subjective
scores than state-of-the-art P.563 scores. Table I shows RMSE,
Cp and Cs calculated for test 2 and 3. It can be said that
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TABLE I
RESULTS FOR PROPOSED QUALITY MEASURE ALONG WITH SCORE USING FILTERBANK ENERGIES AND P.563 SCORE. DATA IN THIS CASE WAS PARTED

ACCORDING TO TEST 2 AND 3. AVERAGE SCORES FOR DIFFERENT CONDITIONS ARE SHOWN

Test 2 Without mapping With mapping Test 3 Without mapping With mapping
Method RMSE Cp Cs RMSE Cp Cs Method RMSE Cp Cs RMSE Cp Cs

AE 40 0.200 0.884 0.867 0.194 0.886 0.867 AE 40 0.252 0.836 0.836 0.248 0.842 0.840
FB 40 0.234 0.801 0.809 0.231 0.818 0.809 FB 40 0.281 0.768 0.761 0.278 0.772 0.761
P.563 0.374 0.721 0.732 0.330 0.736 0.732 P.563 0.374 0.726 0.740 0.350 0.738 0.740

for different test conditions, too, proposed metric gives more
accurate and correlated objective scores. It is worth noting that
scores predicted using both MFCC and autoencoder features
perform better if data of all the test conditions are used for
training. Performance using both the feature degrades if the
test conditions are not involved in training. This effect is
evident from results shown in Table I.

V. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a new non-intrusive speech
quality prediction system using autoencoder features and
ANN. It uses autoencoder features as the acoustic features and
ANN to find an optimal mapping between the features and sub-
jective score. Hence, it poses speech quality prediction task as
a regression problem. We have compared proposed approach
with Mel filterbank energies as acoustic features as well as
with ITU P.563 standard. Quantification of our experimental
results suggests that proposed method has more prediction
accuracy and more correlation with subjective scores than the
existing systems. Future work includes using this method with
various kinds of noise such as noise in the communication
channel and testing the performance using proposed method.
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