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Abstract—Classification of activities of daily living is of
paramount importance in modern healthcare applications. How-
ever, hardware monitoring constraints lead frequently to missing
raw values, dramatically affecting the performance of machine
learning algorithms. In this work, we study the problem of
efficient estimation of missing linear acceleration and angular
velocity measurements, experimenting on a public Human Activ-
ity Recognition (HAR) dataset. We exploit the data correlation
to formulate the problem as an instance of low-rank Matrix
Completion (MC) within a general classification framework. We
consider the effects of our proposed reconstruction method on the
classification accuracy as related to the size of the training and
test sets, and the single versus collective recovery. Additionally,
we compare the performance of our approach with popular
imputation and expectation maximization algorithms for treating
missing measurements, in conjunction with several state-of-the-
art classifiers. The results highlight that robust and efficient
classification is feasible even with a substantially reduced amount
of measurements.

I. INTRODUCTION

Human Activity Recognition (HAR) has received consider-

able attention over the last decade due to its numerous context-

aware applications, particularly within the fields of health,

well-being, and entertainment [1]. Sensor-based activity recog-

nition integrates the emerging area of sensor networks with

novel data mining and machine learning techniques to model a

wide range of human activities [2]. Nonetheless, the evolution

of activity recognition has led to an increasing number of

challenges regarding sensor-based recognition systems.

The lack of a sufficient volume of data is a ubiquitous prob-

lem in many signal analysis areas, especially those depending

on observational data, such as Human Activity Recognition.

High data rates, energy limitations, memory constraints, and

sensor failures, constitute only a subset of the existing factors

leading to undersampled datasets. From the perspective of high

level applications, these constraints contribute to a lack of

sufficient data samples for efficient activity recognition. In this

work, we explore the potential of accurate classification from

a reduced amount of acquired data. To this end, we consider

Matrix Completion (MC), a novel approach for estimating low

rank matrices from a limited number of randomly selected

entries [3], [4].

Formally, our objective is to assess the efficiency of MC

in conjunction with supervised machine learning algorithms

on HAR data streams. We aim to answer these key questions:

Is efficient classification feasible from MC-reconstructed mea-

surement matrices, as opposed to fully-populated ones? And

if so, which could be the lower boundary of unobserved data?

We depart from current state-of-the-art by evaluating the ap-

plicability of inexact Augmented Lagrange Multipliers (ALM)

based MC recovery [5], [6] on 3-axial linear acceleration and

angular velocity data. We introduce a complete framework

illustrated in Fig. 1 for data structuring, reconstruction, clas-

sification, and assessment of the overall recognition process

in the presence of missing values. Without loss of generality,

evaluation relies on a publicly available HAR dataset [7], [8],

extensively used in literature [9]–[11]. The presented results

provide useful insights on applying the MC framework in HAR

data, and highlight the efficacy of our concept.

Fig. 1. The proposed framework. MC reconstruction incorporated on test
phase. Subsequently, feature extraction and classification using the predictive
models formed on training phase.

II. MATRIX COMPLETION

Consider a partially observed n1 × n2 measurement matrix

M. In general, the recovery of the complete set of entries

in a matrix using only K << n1 × n2 entries is an under-

determined problem. However, it has been recently shown

that such a recovery is possible, when imposing constraints

on the number of missing entries and the rank of M [12]–

[14]. Although one could seek an approximate matrix X by

minimizing the rank [15], rank minimization is an NP-hard

problem. Still, a relaxation of this problem produces accurate

estimations by replacing the rank with the computationally

tractable nuclear norm [12]. The relationship is manifested

by the Singular Value Decomposition (SVD) of the n1 × n2

measurements matrix. According to the spectral theorem as-

sociated with the SVD, the MC recovery problem can be

expressed as:
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minimize
X

‖X‖∗

subject to A(Xij) = A(Mij), (i, j) ∈ S (1)

where the nuclear norm is defined as the sum of the singular

values of X. The linear map A, is defined as a random sam-

pling operator recording a small number of entries from matrix

M, that is A(Mij) = {1 if (i, j) ∈ S | 0 otherwise}, where

S is the sampling set. Recovery of the matrix is possible,

provided it satisfies an incoherence property. In that case, the

solution of Eq. (1) will converge to the solution of rank min-

imization with probability 1− cq−3, once K ≥ Cq6/5rlog(q)
random matrix entries are obtained, where q = max(n1, n2),
C and c are appropriate constants, and r is the matrix rank

[12]. MC has been applied in various scenarios, including the

reconstruction of water-treatment [4] and vital signs [16] data.

In this work, each undersampled time-series vector of length

n is transformed into a partially observed n1×n2 measurement

matrix M through a Hankelization process H, where n2

represents the window size. Consequently, we employ the

Augmented Lagrange Multipliers (ALM) based MC to solve

the nuclear norm minimization problem, due to its recovery

performance and computational complexity [5], [6]. We assess

data recovery for different cases of missing data, defined by

the fill ratio f = #non zero elements/n1×n2
.

III. METHODOLOGY

Activity recognition is formulated as a classification prob-

lem (Fig. 1). On classification, there is a training phase for the

classifiers and a test phase to evaluate the performance of the

respectively produced predictive models.

A. Training phase

Temporal Windowing and Feature Extraction: 3-axial sensor

streams are structured in Hankel matrices of [n1] consecutive

lagged temporal windows of [n2] samples. Subsequently, fea-

ture extraction is applied to each window to obtain a vector

of 22 statistical features, namely mean, standard deviation,

min, max, 1st component of principal component analysis,

interquartile range, variance, kurtosis, skewness, median, zero

crossing rate, and an histogram of 10 bins.

Machine Learning Algorithms: For each data channel, the

previously extracted feature vectors are utilized to train each

classifier. We evaluate the performance of 3 state-of-the-art

classifiers for HAR: a decision tree of 8 maximum splits and

Gini’s diversity index as a split criterion, K-Nearest Neigh-

bours (KNN) with k = 10 and Cosine / Euclidean distance

metrics, and Support Vector Machines (SVM) using Gaussian

/ Quadratic kernels, respectively. The aforementioned parame-

ters have been fine-tuned through experimentation and provide

the best predictive model for each classifier.

B. Testing phase

To evaluate the performance of the system, missing val-

ues are artificially introduced in the test streams. Without

loss of generality, we consider zero as a missing value. In

order to simulate realistic scenarios, we apply random zero-

placement at the same instances for each sensing modality,

i.e., for each set of 3-axial sensor streams. Consequently, data

are segmented and structured in Hankel matrices which are

naturally undersampled and need to be reconstructed before

feature extraction is applied.

During the testing phase, we assess the reconstruction

performance when considering data from a single or multiple

sensors as shown in Fig. 2. Specifically, Scenario 1 defined

as the single sensor recovery case, assumes that data recovery

takes place on each Hankel matrix locally, by employing only

data from a single modality (Fig. 2a). Scenario 2, defined as

the collective recovery case, incorporates a central processing

unit and applies the proposed reconstruction method to the col-

lective measurements matrices that correspond to the vertical

concatenation of the individual matrices per sensing modality

(Fig. 2b). In Scenario 3, collective recovery is also employed,

however at this point vertical concatenation involves all Hankel

matrices grouped into a single one containing all data streams

(Fig. 2c). Subsequently, for the two latter cases, data fusion is

applied to form the initial, yet reconstructed Hankel matrices.

For each scenario, we employ the proposed MC recovery

and compare its performance with two state-of-the-art data

recovery methods, namely the k-Nearest Neighbour (k-NN)

with k=1 [18], and the Regularized Expectation Minimization

(RegEM) [17]. The reconstruction quality is evaluated using

the Normalized Mean Square Error (NMSE) metric, defined

as the mean squared error between the fully-populated and the

reconstructed measurements matrix, normalized with respect

to the l2 norm.

IV. EXPERIMENTAL EVALUATION

In this study, we consider a popular HAR database [7]

created from the sensor recordings of 30 subjects performing

5 activities of daily living (Walking, Climbing Stairs, Sitting,

Standing, Laying). A smart phone (Samsung Galaxy S II)

attached on the waist was utilized as the recording device.

3-axial linear acceleration and angular velocity constitute the

available sensing modalities, providing us with 6 data streams

in total. Data were captured at 50Hz and pre-processed by

applying noise filters, while the experiments were labelled

manually through video-recordings. The obtained dataset was

randomly partitioned into non-overlapping training and testing

sets of varying sizes, structured in Hankel matrices of consec-

utive temporal windows of [n2 = 128] samples (2.56 seconds)

with a 50% overlap [19].

A. Effects of training set size on classification performance

The objective of this experiment is to assess how the

performance of the classifiers is associated to the size of the

training set. The system is trained with numerous sizes of

randomly selected data, corresponding to up to 21 subjects,

i.e. 70% of the dataset. Subsequently, the classifiers are tested

on the resulted predictive models and evaluated with respect to

the classification accuracy on predicting the activities, namely

labels, of the test set. For each training set, the test set
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(a) Scenario 1: Reconstruction of
each individual data matrix.

(b) Scenario 2: Reconstruction of vertically concate-
nated data matrices per sensing modality and fusion to
form the individual, yet reconstructed, matrices.

(c) Scenario 3: Reconstruction of all vertically con-
catenated data and fusion to form the individual, yet
reconstructed, matrices.

Fig. 2. Employed scenarios for missing values reconstruction.

considers the data of one randomly selected user. Note that

in this experiment the test Hankel matrices, constructed from

the data streams are fully-populated, i.e. f = 1, therefore

providing a ground truth for our later experiments.

Fig. 3 illustrates the performance of each classifier measured

by the classification accuracy as a function of the number of

trained users. As expected, increasing the number of users

in the training phase has a positive effect on the system’s

learning. All considered classifiers present stable performance

when trained with at least 14 distinct users. This observation

provides a useful insight regarding the amount of time neces-

sary for the training phase. Since, our data streams are captured

at a constant rate of 50 Hz, 7.25 minutes are needed to capture

the data of an average user (340 windows), and therefore we

can conclude that 7.25 × 14 ≃ 100 minutes of non-recurring

train data, set a sufficient training period for our system.

Moreover, we can observe that SVMs achieve the highest

performance among all employed classifiers outperforming

them by 3− 4%, and managing over 90% accuracy.
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Fig. 3. Classification accuracy w.r.t. number of trained users for all classifiers
with f = 1 .

B. Effects of test set size and fill ratio on reconstruction error

In this set of experiments, we investigate the MC’s recovery

abilities with respect to the value of f and the size of the

measurements matrix. The objective is to assess how the

ALM-based NMSE is associated to the size of the data, by

evaluating the recovery as a function of different sizes of
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Fig. 4. NMSE w.r.t. f and test data size for x-axis accelerometer (left) and
gyroscope (right) considering Scenario 1.

measurements matrices, ranging from n1 = 34 up to 340
consecutive windows of n2 = 128 samples and fill ratios from

f = 0.1 to 0.9.

Fig. 4 illustrates the recovery performance measured by the

NMSE as a function of f and the size of test data for Scenario

1. It is straightforward to observe, that higher fill ratios lead

to more accurate measurements reconstruction as expected, in

accordance to the theoretical models. Moreover, the size of the

measurements matrix also plays a crucial role to the recovery

performance, since larger matrices are clearly shown to present

lower reconstruction error. This is a reasonable expectation,

considering that larger data matrices contain a greater number

of observed measurements, which can be exploited by the MC

method for more accurate reconstruction of the unobserved

ones. However, one cannot fail to notice that there is an

important trade-off concerning the computational complexity,

as the matrices grow to higher dimensions.

We were also interested in comparing our proposed MC-

based reconstruction with the aforementioned popular recovery

techniques. Fig. 5 depicts comparative plots of the NMSE and

the corresponding processing times of all applied reconstruc-

tion methods as a function of f , on x-axis channels of both

modalities available in the dataset at hand, namely accelerom-

eter and gyroscope data of size [n1 = 340]× [n2 = 128].

It is observed that, when moving on to higher fill ratios,

ALM outperforms all other employed imputation algorithms

in terms of NMSE. However, for low fill ratios RegEM

achieves better reconstruction quality, at the expense of its

tremendous computational complexity, which is translated into
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a dramatic increase in its running time. Consequently, RegEM

can be considered inefficient for large scale data processing

on commodity hardware, e.g. CPU. K-NN performs poorly

in comparison with the other employed schemes for all fill

ratios. Another key observation is related to the superior

reconstruction quality of the accelerometer data as opposed to

that of the gyroscope data. It is obvious that all reconstruction

algorithms considered behave significantly better for the case

of accelerometer data, due to higher linear correlation mani-

fested by the smaller number of dominating singular values.
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Fig. 5. NMSE (top) and corresponding times (bottom) w.r.t. f of all applied
reconstruction methods for x-axis accelerometer (left) and gyroscope (right)
data (Scenario 1).

C. Single vs Collective Recovery

In this experiment, we were interested in comparing the

reconstruction performance between scenarios 1, 2, and 3, de-

picted in Fig. 2. ALM-recovery performance of each scenario

with respect to f , is shown in Fig. 6, for x-axis accelerometer

and x-axis gyroscope data respectively.
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It is remarkable that, collective recovery (Scenarios 2 and

3) significantly outperforms the single sensor case (Scenario

1) in terms of reconstruction, over all different values of f .

Moreover, Scenario 3, involving both sensing modalities, even

the less correlated gyroscopes, presents the most promising

results. This outcome suggests that collective MC recovery

can fully utilize the correlation that exists among sensors,

even if such correlations are not explicitly encoded into the

recovery process, thus highlighting the generalization ability

of the proposed schemes.
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Fig. 7. ALM (left) and RegEM (right) reconstruction time w.r.t. f , considering
all 3-axial data streams for Scenarios 1,2, and 3.

Furthermore, one would expect ALM to present higher

running times for collective recovery, since it is dealing with

measurements matrices of greater sizes. However, this is not

the case. In fact, as highlighted in Fig. 7, Scenario 3 for

ALM is the most efficient, also in terms of computational

complexity. Specifically, instead of performing separate ALM

reconstructions individually for all 6 relatively “small-scale”

data streams (Scenario 1), we perform only one reconstruction

call of higher computational complexity, which is cumulatively

more cost-effective. Finally, RegEM algorithm presents an

exponential increase in its running time for Scenario 3, as

illustrated in Fig. 7.

D. Effects of reconstruction on classification accuracy

In the final set of experimental results, we incorporate the

concept of missing measurements structuring and reconstruc-

tion into the overall classification process, and attempt to

quantify the association of the reconstruction error with the

resulting classification accuracy.
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Fig. 8. Classification accuracy for ALM Scenario 3 recovery w.r.t. to f .

Fig. 8 illustrates the classification performance of an indica-

tive subset of the employed classifiers, compared to the one

achieved from a fully-populated matrix for ALM Scenario 3

reconstruction, with respect to f . A significant observation

regarding the overall performance of our proposed framework

is that, for all employed classifiers efficient classification ac-

curacy can be achieved by extremely undersampled matrices,

lacking half of their observations. More specifically, let us

consider as ground truth the classification accuracy feasible

2016 24th European Signal Processing Conference (EUSIPCO)

2013



by the classifiers for fill ratio 1. We notice that, at fill ratio

0.5, all classifiers manage accuracy of only 1−2% lower than

the ground truth, whereas for f = 0.6 they nearly achieve

optimal performance.

Fig. 9 outlines the classification performance of KNN with

a Cosine distance metric for ALM Scenario 1 reconstruction,

as a function of f and the size of test data. It presents the same

behaviour with the corresponding Fig. 4 of MC as expected,

and explicitly shows the direct relationship between NMSE

metric and the resulting classification accuracy of the system.
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Fig. 9. Classification accuracy of Cosine KNN for ALM Scenario 1
reconstruction, w.r.t. f and test data size.

Finally, Fig. 10 represents the classification accuracy of

SVM with a Gaussian kernel with respect to f , for ALM

reconstruction considering all employed scenarios. It furtherly

confirms our above drawn conclusions regarding the effective-

ness of collective recovery, and gives a fairly good intuition, as

far as the efficiency of ALM matrix completion is concerned,

on the performance of the proposed scheme in truly lost or

unavailable measurements.
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V. CONCLUSION

In this work, we have investigated the effects of missing

measurements reconstruction on the classification performance

of human activity data streams. We have focused on Matrix

Completion on artificially introduced missing data. Based on

our experimental findings, we can conclude that effective

classification accuracy is feasible even with only 50 − 60%

data observations. Furthermore, Matrix Completion shown to

be a more efficient recovery method compared to other popular

Imputation and Expectation Maximization algorithms, in terms

of time as well as reconstruction performance. Additionally,

collective recovery has been proved to achieve better recon-

struction than single sensor recovery as it better exploits

the correlations among the data. Future work could include

the investigation of the effects of missing measurements

reconstruction from multiple sensing modalities, as well as

classification from heterogeneous sources.
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