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Abstract—Diffusion adaptation (DA) algorithms allow a net-
work of agents to collectively estimate a parameter vector, by
jointly minimizing the sum of their local cost functions. This
is achieved by interleaving local update steps with ‘diffusion’
steps, where information is combined with their own neighbors.
In this paper, we propose a novel class of nonlinear diffusion
filters, based on the recently proposed spline adaptive filter
(SAF). A SAF learns nonlinear models by local interpolating
polynomials, with a small overhead with respect to linear filters.
This arises from the fact that only a small subset of parameters
of the nonlinear component are adapted at every time-instant. By
applying ideas from the DA framework, in this paper we derive
a diffused version of the SAF, denoted as D-SAF. Experimental
evaluations show that the D-SAF is able to robustly learn the
underlying nonlinear model, with a significant gain compared to
a non-cooperative solution.

I. INTRODUCTION

Lately, there has been a renewed interest in the problems
of decentralized inference and estimation, topics with a long
history in the signal processing community [1]. With respect
to standard linear filtering, a particularly promising line of
research can be found in the field of diffusion filtering (DF)
[2]. DF algorithms were originally proposed to extend linear
filtering to the distributed case, by alternating local update
steps (by means of classical gradient descent procedures)
with global ‘diffusion’ steps, where each node combines the
information provided by its own neighbors. By considering
only localized forms of communication, thus, they are able
to be deployed in a wide range of situations, with strong
capabilities of scaling up to very large networks. Originally
proposed for adaptation using LMS-like updates [3], named
the diffusion LMS (D-LMS), most of the standard linear
filtering algorithms have now been mapped to the DF field
and have found several successful applications [2], [4].

Clearly, their applicability is limited to scenarios where the
assumption of a linear model between the output and the
observed variables is meaningful. In case where a nonlinear
model is needed, several alternatives (or extensions) of DF
algorithms exist. Basically, they can be categorized in three
classes, including (i) distributed versions of kernel methods
[5], [6]; (ii) linear filters combined with a fixed nonlinear
expansion [7], [8]; and (iii) algorithms framed in the dis-
tributed optimization and machine learning frameworks [9]-
[11]. This last class includes extensions of the DF theory
to the distributed optimization scenario, which is denoted
as Diffusion Adaptation (DA) [2]. However, each of these
approaches typically loose one or more of the features of linear
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DF algorithms, either in terms of easiness of implementation,
requirements on the topology, or real-time constraints.

In this paper, we propose a novel class of nonlinear DF
algorithms based on the recently proposed spline adaptive filter
(SAF) [12]. SAFs are attractive nonlinear filters for two main
reasons. First, the nonlinear part is linear-in-the-parameters
(LIP), allowing for the possibility of adapting both parts of
the filter using standard linear filtering techniques. Secondly,
while the spline is defined by a potentially large number of
parameters, only a small subset of them is considered and
adapted at each time step (4 in our experiments). Due to this,
they allow to approximate nontrivial nonlinear functions with
a small increase in complexity with respect to linear filters.

As an initial step towards distributed SAFs, in this paper we
focus on the Wiener SAF [12], where a linear filter is followed
by an adaptive nonlinear transformation, obtained with spline
interpolation. Based on the general theory of DF [11], we
propose a diffused version denoted as D-SAF. In particular,
we show that a cooperative behavior can be implemented by
considering two subsequent diffusion operations, on the linear
and nonlinear components of the SAF respectively. Due to this,
the D-SAF inherits the aforementioned characteristics of the
centralized SAF, namely, it enables the agents to collectively
estimate a nonlinear function, with a small overhead with
respect to a purely linear DF. In fact, D-LMS can be shown to
be a special case of D-SAF, where adaptation is restricted to
the linear part only. Simulations show that the D-SAF is able
to efficiently learn the underlying model, and outperforms D-
LMS and a non-cooperative SAF.

The rest of the paper is organized as follows. In Section
II we introduce the basic framework of spline interpolation
and SAFs. Section III formulates the D-SAF algorithm. Sub-
sequently, we detail our experimental results in Section IV.
Finally, Section V presents some concluding remarks.

II. SPLINE ADAPTIVE FILTER

Denote by x[n] the input to the SAF filter at time n, and
by x, = [z[n],...,2z[n — M +1]]" a buffer of the last M
samples. In this paper, we assume to be dealing with real
inputs, and that an unknown Wiener model is generating the
desired response as follows:

d[n] = fo (W§xn) +vn], (1)

where wg € RM are the linear coefficients, fo(-) is a
desired nonlinear function, which is supposed continuous and
differentiable, and v[n] ~ N(0,0?) is a Gaussian noise term.

1498



2016 24th European Signal Processing Conference (EUSIPCO)

Similarly, a SAF computes the output in a two-step fashion.
First, it performs a linear filtering operation given by:

s[n] =wlx, . (2)

Then, the final output is computed via spline interpolation
over s[n] [12], [13]. A spline is a flexible polynomial defined
by a set of () control points (called knots), and denoted as
Qi = [4e,i @y,i]. We suppose that the knots are uniformly
distributed, i.e. ¢z i+1 = ¢z,; + Az, for a fixed Az € R.
Without lack of generality, we also constrain the knots to be
symmetrically spaced around the origin. Given the output of
the linear filter s[n], the spline is defined as an interpolating
polynomial of order P, passing by the closest knot to s[n]
and its P successive knots. In particular, given the index ¢ of
the closest knot, we can define the normalized abscissa value
between ¢, ; and g, ;11 as:

sln] | slnl
U=——|—-—1. 3
Az {Am )
From u we can compute the normalized reference vector u =
P, P-1 T : ;
[u” wP~1 .. w1]", while from i we can extract the relevant

control points q; », = [qy.i Qy,i+1 - - - qy7i+p]T. We refer to the
vector q; ,, as the ith span. The output of the filter is:

y[n] = ¢(s[n]) = u"Bq; 4)

where ¢(s[n])is the adaptable nonlinearity, and B €
RPH+D*(P+1) ig called the spline basis matrix. In this work,
we use the Catmull-Rom (CR) spline with P = 3, given by:

-1 3
1] 2
B_§ -1 0 1 o0}|" )

0 2 0 0

Several alternative choices are available, such as the B-spline
matrix [12]. Both (2) and (4) are LIP, and can be adapted with
the use of any standard linear filtering technique. Applying the
chain rule, it is straightforward to compute the derivative of
the SAF output with respect to the linear coefficients:

Op(slnl) _ dp(sln]) ~ Ou  Os[n] _

ow, ou dsln]  Ow,
. 1
- Uqu,n (A.’,E) Xn (6)
where:
= g—;‘ =[PPt (PP 210 . )
Similarly, for the nonlinear part we obtain:
Op(sln) _ g .

aqi,n

In this paper, we consider a first-order adaptation for both the
linear and the nonlinear part of the SAF. Defining the error
e[n] = d[n] — y[n], we aim at minimizing the expected mean-

squared error given by:
J(w,q) =E {e[n]z} , 9)

where q = [gy.1,- -, ¢y.q]" - As is standard approach, we ap-
proximate (9) with the instantaneous error given by J (w,q) =
e[n]?, then, we apply two simultaneous steepest-descent steps
to solve the overall optimization problem:

(10)
Y

where we defined ¢’(s[n]) = uBq;,, (&), and we use two
possibly different step-sizes iy, jtg > 0. Note that in (11) we

adapt only the coefficients related to the ith span, since it can
0J(Wn,dn)

Wil = Wi + fwe[n]e’ (s[n])xn
u,

Qin+1 = Qi,n + qu[n]BT

easily be shown that is 0 for all the coefficients
outside the span. Coefficients of the spline are initialized such
that ¢ (s[n]) = s[n|. Using this initialization criterion, the LMS
filter can be considered as a special case of the SAF, where
adaptation is restricted to the linear part, i.e. p, = 0.

III. DIFFUSION SAF

In the rest of the paper, we employ the standard network
model as in the DF literature [2]. More in particular, we con-
sider a network of L agents (or nodes), indexed by the integers
1,..., L. The connectivity of the network is represented in
its entirety by a real-valued matrix C € RL*L, where entry
Cr; > 0 if nodes k and [ are connected, 0 otherwise. We
assume that communication between two nodes k and [ is
allowed only if Cy; > 0, i.e., only if k£ is in the immediate
neighborhood of {. The symbol N}, will denote the inclusive
neighborhood of node k. Generally speaking, the matrix C
is used by the agents to fuse information coming from their
neighborhoods. For this reason, we refer to C as the mixing
matrix, and to a single entry C; as a mixing coefficient. As
is standard assumption, we require the mixing coefficients to
define a convex combination for every node:

L
Cr>0and » Cp=1 kil=1,... L.
=1

(12)

Formally, any left-stochastic matrix is a valid mixing matrix
[2]. In our experiment, we consider the well-known Metropolis

weights [14].
At a generic time instant n, each agent receives some
(k) (k)

input/output data denoted by (Xn , [n}), where we in-

troduce an additional superscript (k) for explicating the node
dependence. We assume that streaming data at the local level
is generated similarly to (1), according to:

d® ] = fo (onxgc)) + oM. (13)

More in particular, we assume that wo and fo(-) are shared
over the network, which is a reasonable assumption in many
situations [2]. Each node, however, receives input data with
possibly different autocorrelation Rgﬁ) =E {x(k)Tx(k) }, and
different additive noise terms v*)[n] ~ N(0,0%). Addi-
tionally, we assume that the nodes have agreed beforehand
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Fig. 1. Schematic depiction of SAF interpolation performed over a network
of agents. Each agent is connected to a neighborhood of other agents, and at
every time instant it updates a local estimate of the optimal SAF model.

on a specific spline basis matrix B, and on a set of initial
control points qg. Both quantities are common throughout the
network. This is shown schematically in Fig. 1.

Given these assumptions, the network objective is to find
the optimal SAF parameters (w,q) such that the following
global cost function is minimized:

szgz ZE{ o

where each expectation is defined with respect to the local
input statistics. To solve this, we consider an approach inspired
to the ideas of DF algorithms [2]. As explained in Section I, the
main idea of DF techniques is to interleave parallel adaptation
steps with diffusion steps, where information on the current
estimates are locally combined based on the mixing matrix C
(see for example [2, Section V-B]). Denote by (w%k)7q%k))
the SAF estimate of node k at time-instant 7. In the diffusion
SAF (D-SAF), each node starts by diffusing its own estimate
of the linear part of the SAF filter:

P =D Cuwd

lENk

mPh . a4

glob w, q

(15)
w-diffusion

Next, we can use the new weights 1/;( ) to compute the linear
output of the filter as s*)[n] = ¢(k)T . From this, each

node can identify its current span index . In the second phase,
the nodes perform a second diffusion step over their span:

=Y Cquz(',lzl -

1ENG,

(16)
g-diffusion

The g-diffusion step requires combination only of the coeffi-
cients in the span qgﬁz, hence its complexity is independent
of the number of control points in the spline, being defined
only by the spline order P. Due to this, it also requires
significantly less communication than the w-diffusion step:
each node sends its span index ¢ to the neighbors, receiving
back the vectors qflz, For simplicity, the mixing weights Cj;
in the two diffusion steps are assumed identical.

Once the nodes have diffused their information, they can

Algorithm I
SUMMARY OF THE D-SAF ALGORITHM (CTA VERSION).

1: Initialize w'*) = 6[n],q", for k =1,...,L
2: forn=0,1,... do

3 for k=1,...,L do

4 w(k) Zle Cklw< )

5. s(F) [n] = ,(p(k)T (k)

6 u=s®n]/Az — [s¥[n]/Az]

7 = L5 lnl/Aa] + (@ - 1)/

8 (k) =2len, Cqu

9 y(k>[ | = TB&i,n

10: M) = dMn] -y
e wi = P 4l Ml (P[]
120 alhl, =& F g eP B

13:  end for

14: end for

proceed to a standard adaptation step as in the single-agent
case. In particular, the spline output given the new span is
obtained as:

y [ = on(sMn]) = u"Be) a7)

From this, the local error is given as e(¥)[n] = d*) [n]—y*)[n].
The two gradient descent steps are then:

k ,

wily = ¢+ pPe Ol (O, ()

w-adapt

ai 1 = &+ e B . (19)

g-adapt

where the two step sizes ugﬂ),uq) are possibly different

across different agents. The overall algorithm is summarized
in Algorithm I. Note that in the current paper we consider a
diffusion step prior to the adaptation step. In the DF literature,
this is known as a combine-then-adapt (CTA) strategy. This
is true even if the two diffusion steps are not consecutive
in Algorithm I. In fact, Algorithm I is equivalent to the
case where the full vector qﬁ[” is exchanged before selecting
the proper span. Following similar reasonings, we can easily
obtain an adapt-then-combine (ATC) strategy by inverting the
two steps. Additionally, similarly to what we remarked in
Section II, we note that D-LMS [3] is a special case of the
D-SAF, where each node initializes its nonlinearity as the
identity, and ,uék) =0,k=1,...,L.

IV. EXPERIMENTAL SETUP

To test the proposed D-SAF, we consider a network topol-
ogy with L = 10 agents, whose connectivity is generated
randomly, such that every pair of nodes has a 60% probability
of being connected. Data is generated according to the Wiener
model in (13), where the optimal weights w( are extracted
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Fig. 2. Nonlinear distortion applied to the output signal.

randomly from a normal distribution, while the nonlinearity
fo(+) for the experiment is depicted in Fig. 2. This represents
a mild nonlinearity. The input signal at each node is generated
following the experiments in [12], and it consists of 25000
samples generated according to:

zp[n] = agap[n — 1) 4+ /1 — aje[n],

where the correlation coefficients aj are assigned randomly at
every node from an uniform probability distribution in [0, 0.8],
while €[n] is a white Guassian noise term with zero mean and
unitary variance. The desired signal is then given by (13),
where the noise variances o(*)[n] at every node are assigned
randomly in [—10,—25] dB. In all experiments, knots are
equispaced in [—2, +2] with Az = 0.2.

We compare D-SAF with a non-cooperative SAF (denoted
as NC-SAF), which corresponds in choosing a diagonal mixing
matrix C = I. Similarly, we compare with the standard
D-LMS [3], and a non-cooperative LMS, denoted as NC-
LMS. Experiments are repeated 15 times, by keeping fixed
the topology of the network and the optimal parameters of
the system. Results are then averaged throughout the nodes.
MATLAB code is available under open-source license.!

Local correlation coefficients, noise variances and local
step-sizes are chosen randomly in the intervals [0, 0.7],
[0,1072] and [0, 1072] respectively. These settings allow a
certain amount of variety on the network. The first measure
of error that we consider is the mean-squared error (MSE),
defined in dB as:

MSEx[n] = 101og (B (d[n] ~ uefrn])”])

Results in term of MSE are given in Fig. 3, where the
proposed algorithm is shown with a solid violet line. The
MSE is computed by averaging (21) over the different nodes.
As expected, due to the nonlinear distortion, LMS achieves
a generally poor performance, with a steady-state MSE of
—12 dB. Additionally, there is almost no improvement when
considering D-LMS compared to NC-LMS. The SAF filters
are instead able to approximate extremely well the desired

(20)

2n

Uhttps://bitbucket.org/ispamm/diffusion-spline-filtering

NC-LMS

0 0.5 1 1.5 2 2.5
Sample x10*

Fig. 3. MSE evolution, averaged across the nodes.

system. The diffusion strategy, however, provides a significant
improvement in convergence time with respect to the non-
cooperative version, as is evident from Fig. 3. Further clarifi-
cations on the two algorithms can be obtained by considering
the linear mean-squared deviation (MSD):

MSD}, = 101og (E [wo — wi 3] ) | 22)

and similarly for the nonlinear MSD. The overall behavior
of the MSD is shown in Fig. 4. In particular, we plot the
MSD evolution for D-SAF and for three representative agents
running NC-SAF. It can be seen that, due to the differences in
configuration, some nodes have a much slower convergence
than other, such as node 6 compared to node 1. However,
these statistical variations are successfully averaged out by
the diffusion algorithm, which in the experiments was found to
outperform even the fastest node in the network. The resulting
nonlinear models for three representative nodes running NC-
SAF, and for the nodes running D-SAF are shown in Fig. 5.

V. CONCLUSIONS

DA allows to derive distributed optimization protocols, that
only rely on limited (local) exchange of information between
agents of a network. In this paper, we have introduced a dis-
tributed algorithm for adapting a particular class of nonlinear
filters, called SAF, using the general framework of DF. The
algorithm inherits the properties of SAFs in the centralized
case, namely, it allows for a flexible nonlinear estimation
of the underlying function, with a relatively small increase
in computational complexity. In particular, the algorithm can
be implemented with two diffusion steps, and two gradient
descent steps, thus requiring in average only twice as much
computations as the standard D-LMS. Our experimental results
show that D-SAF is able to efficiently learn hard nonlinearities,
with a definite increase in convergence time with respect to
a non-cooperative implementation. In this work, we have fo-
cused on a first-order adaptation algorithm, with CTA combin-
ers. In future works, apart from a thorough theoretical analysis
of its convergence properties, we plan to extend the D-SAF
algorithm to the case of second-order adaptation with Hessian
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(a) Linear MSD (b) nonlinear MSD
Fig. 4. MSD evolution for D-SAF and 3 representative nodes running NC-SAF.
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Fig. 5. Final estimation of the nonlinear model. (a) Three representative nodes running NC-SAF. (b) Final spline of the nodes running D-SAF.

information, ATC combiners [3], and asynchronous networks
[15]. Additionally, we plan on investigating diffusion protocols
for more general architectures, including Hammerstein [16]
and IIR spline filters.
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