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Abstract—We show that the relative usage of the different
attributes of a cloud server can be estimated under time-varying
loads. We demonstrate the effectiveness of these estimators by
determining how user requests for video —from a video server—
affects its usage. Relative Attribute Usage (RAU) estimators are
designed by (1) formulating a generative model for the server
attributes; (2) using the fact that the load signal has compact
support compared to non-idealities in the server’s behaviour in
the time-frequency domain; and (3) using power-weighting to
refine the estimates. The resulting estimators have low complexity.
This motivates their candidacy when attribute usage estimates
are required for run-time outage diagnosis routines, a task
which is commonly referred to as ‘‘data-centre whispering”. We
demonstrate the application of these estimators on a Cloud-
testbed in three practical scenarios, when the server is under
a (1) periodic, (2) step-increasing and (3) flash-crowd load.

Index Terms—Power-weighted estimators, Blind Source Sepa-
ration, Video-on-Demand.

I. INTRODUCTION

Understanding the current and future performance of Cloud
Computing systems is challenging [1]. (1) The flexibility of
programmable computing architectures, promised by Software
Defined Networking (SDN) [2]; (2) the desire for dynamic
resource [3] and service allocation to improve the efficiency
of existing computing infrastructures (by increasing the ef-
ficiency of server usage [4]); and finally, (3) the reality of
a heterogeneous computing substrate —as data-centres slowly
evolve to meet the needs of SDN, reuse existing machines,
and incorporate new technologies (cf. the discussion in [1]
about the composition of an operational data-centre)— provide
a challenging network management scenario for the Network
Manager (NM) of the present day.

One of the chief attributes of the self-regulating or self-
optimising system envisaged by SDN is that not only can
services and resources migrate (different machines can be used
for different tasks at different times), but the load on these
systems can change at any time, in response to an arbitrary
train of user requests [5]. Therefore, it is important to be
able to estimate how this dynamically changing environment
is affected by different usage patterns [6].

We discuss the problem of probing a server with a train
of user requests for a Video-on-Demand (VoD) service [7]
in a Cloud-like set-up; we determine how different attributes
of the server respond under different usage loads [8]. This
work is relevant to the Blind Source Separation (BSS) com-
munity as we demonstrate how work on Time-Frequency (TF)
disjointness in [9], [10], for example, can be applied in a
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new domain with good effect. We call this process Relative
Attribute Usage (RAU) estimation. RAU estimation learns a
typical signature for the performance of a machine/server, in
response to user requests, which arise due to time-varying
system load. We develop a model for RAU estimation and
derive RAU estimators. We posit that they provide the means
for the NM to passively or actively probe the secrets of an
operational data-centre, in run-time in a lightweight manner.
They provide the intelligence required to form an initial
outage diagnosis. They facilitate the “data-centre whispering”
functionality increasingly demanded of NMs, who manage
data-centre environments consisting of millions of machines.
Contributions: (1) We pose the challenging RAU problem as
a supervised deconvolution problem, which is reminiscent of
the BSS literature. (2) Using this simple model for RAU given
a user request train, we derive Power Weighted Estimators
(PWEs) for RAU estimation. (3) We examine the interplay
between our PWEs for the RAU, and a number of different
load traces.

Organisation: In Section II we describe the generative model
for the attributes collected from the kernel of a UNIX server
which captures the evolution of the number of active user re-
quests and the imperfect behaviour of the server. In Section III
we derive Power Weighted (PW) RAU estimates and outline
the assumptions underpinning them. We examine the statistics
of three traces in Section IV: a periodic, step-increase and a
flash-crowd trace, and then we estimate RAU of approximately
220 attributes for each trace.

II. BACKGROUND & GENERATIVE MODEL

We ask the question: “how are the different attributes of a
server used when Video-on-Demand is requested?” We attempt
to estimate the video-server attribute usage relative to the load
on the server. When a client requests VoD from a server whose
resources are shared with potentially multiple other users, the
effect of the request can be measured by calling a System
Activity Report (SAR), which is a widely available [LJUNIX
command (cf. http://linux.die.net/man/1/sar). The SAR returns
a vector of measurements x(i) = [z1(i),...,zn(i)]T € RV
—at the discrete time index ¢— that quantify the performance
of the N different attributes of the server.

If the number of active VoD users of the server at time ¢ is
denoted a(i) € Z —a real, integer-valued, non-negative time-
series— the measurements x(i) can be written as a function
of the load on the server, and non-idealities in its behaviour,
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using an instantaneous mixing model, reminiscent of [9], [10],
x(1) = H(i)s(7). (D)

The roles of the mixing matrix H(i) and the perturbation
signals s(7) are described, starting with a few special cases.
TCP Socket Count: Let the N-th attribute, 2 (¢), denote the
number of active TCP sockets on the server at time index ¢. An
additional VoD request at time ¢+ 1 increments the TCP socket
count, which is our proxy for the load signal z (i) = a(i), by
1, therefore, zn(i+1) = x5 (i)+ 1. Row 1 of Fig. 1 illustrates
one user requesting video, then a second user, followed by
a third. The first request starts at ¢; and the video finishes
at to. The effect of this session on the TCP socket count is
represented by the signal u(i — t1) — u(i — t2). The effect of
three users requesting video at different times is illustrated by
the step functions activated at the time points, ¢3,t4,t5 and
te, €.8. {L‘N(Z) = (u(z - t3) — u(z — tG)) + (U(Z — t4) — U(Z —
te)) + (u(i — t5) — u(i — tg)). The aggregate affect of these
user requests is illustrated in Row 2 of Fig. 1, zx (i) = a(i).
Arbitrary Attributes: The effect of an additional user session
on the rate of context switching (attribute x1(7)), or the CPU
usage (attribute x2(7)) of the server, for example, is not as
clear-cut. A simple model for the n-th attribute is

T (i) = ana(i) + s,(4). (2)

The term «,, represents the true RAU of the n-th attribute,
relative to the TCP socket count. It is illustrated in Row 1 of
Fig. 1 by scaling the step-functions by «,. The performance
of servers is not ideal. We add the term, s,(i), to capture
perturbations in the server’s performance from the ideal per-
formance state for the n-th attribute in Row 3 of Fig. 1. The
perturbation signal is composed of the sum of a perturbation
signal component, €, (4, k), for each active user request,

a(i)
sn (1) = en(i, k). 3)
k

=1

The duration and variance of these perturbation components,
en(t, 1), €,(i,2) and €, (4, 3), are illustrated in Row 3 of Fig. 1.
Assumptions: This model makes certain fundamental as-
sumptions which we justify in the discussion below and by
pointing to the effectiveness of the resulting estimators in
comprehensive numerical experiments.

Linearity: We have assumed that the server is relatively lightly
loaded, and thus, it can be assumed to be in an approximately
linear mode of operation.

The linearity assumption is not always true for all loads.
The server may become saturated by requests, and so the use
of a linear RAU model may then be unreasonable.
Uncorrelated Perturbations: Non-ideality in the server’s
performance is uncorrelated for each attribute and user.

We expect the performance of the server attributes to exhibit
greater variation as the load on the server increases. This
assumption is supported by empirical evidence. One way
for this to occur is for the contribution of the perturbation
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Fig. 1. Attribute Generative Model: Heaviside step functions are stacked in
row 1 to illustrate the activation of different video sessions. Row 2 illustrates
the TCP socket count attribute, zn (2) = a(z), which arises in response to
these user requests. The imperfection in server behaviour with respect to the
n-th attribute is illustrated using the perturbation signals €y, (%, k) in row 3.
The discrete time index ¢ evolves from left to right.

components for each active user with respect to the n-th
attribute to be uncorrelated.
Constant Activation: Attributes are activated for the duration
of the session at a constant level, e.g oy, (u(i—t;) —u(i—t;))).

Certain attributes may only be affected for a short duration
of the activated VoD session. Moreover, the effect of a request
may cause the attribute usage to ramp-up or down. We assume
that the relative usage is constant as a first approximation.
This model may benefit from further refinement and is a topic
of our on-going work. It is important to note that the SAR
returns the attribute measurements in the form of an average
of the measurements over a configurable interval, and thus,
the observed attribute values are typically smoothed-out.

Finally, we posit that the server under examination is only
serving one type of workload so that the load placed on
the server corresponds to one service. This is a reasonable
assumption: workload isolation is a major topic of research
in the networking community [1]. Isolation of different work-
loads may allow the NM to perform network planning for
workloads which are more predictable —a school of thought
in the field of computer networking holds that multiplexing
different workloads on a set of common machines or links
should be avoided as it may have unexpected consequences
on the performance of each of the services, for example,
unexpected network delays due to poor resource allocation,
or the saturation of different server attributes.

We complete this section by defining the mixing matrix:

H(i) = [In]a(i)al]. 4)

It consists of an N x N identity matrix Iy and the vector
of RAU scalars o = [ag, aa, ..., an]T, one for each of the
attributes. Finally, the perturbation signal vector is defined as
s(i) = [s1(1),52(2),...,sn-1(),0,1]T. Recall that the TCP
socket count corresponds to the N-th attribute, and so, we
define its perturbation signal to be zero. The (N 4 1)-th entry
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of s serves to “add-in” the scaled load contribution to the
corresponding attribution measurement.

III. RELATIVE ATTRIBUTE USAGE ESTIMATORS

Goal: The goal of this paper is to estimate the true attribute
usage relative to the load on the server, e.g. oy, Vn in the
presence of server perturbation signals s, (i) and a time-
varying load a(i). In effect we treat the load signal as the
source signal we desire and we treat the fluctuations in the
server’s performance from the ideal server behaviour as an
interfering source signal, which corrupts our estimate of “by
how much” the load uses different attributes. The problem is
that the source and the interfering signals are mixed by the
multiplexing/mixing action of the network load-balancer —the
network entity that assigns workload to different servers— and
the inherent non-ideality of real-world servers. To obtain RAU
estimators, we refine the generative model above, with results
in the BSS literature [11].

To begin we posit that the load on the server has compact
support in the discrete TF domain. We rely on the Discrete
Fourier Transform (DFT) to transform each attribute time
series into the discrete TF domain, [10], [12], using a sliding
window, w(%), positioned at time 7 for a local-in-time estimate

T{an (i) Hw, 7) : 20 (i) = Xn(w,T) (5)

where w is the discrete frequency index. Superior linear
transforms may suggest themselves once the TCP socket count
signal has been observed for some previous observation period.
It follows that the DFT of the perturbation signal, s, (i) € R,
and the load signal, a(i) € R, are S,(w,7) € C and
A(w, ) € C respectively. By appealing to the properties of
the DFT, the first NV — 1 attribute signals may be written as
the sum of two TF signals. The TCP socket count consists of
one term because we assume that it is exact.

Xn(w,7) = anAlw, 7) + Sp(w,7), 1<n<N—-1 (6)
and Xy (w,7) = A(w, 1) for the TCP socket. @)

The assumption that the load has compact support in TF may
be motivated by considering that perturbations in the server’s
behaviour are likely to occur at higher frequencies than the rate
at which new users request video from the server. In addition,
the perturbations signal S, (w,7) is unlikely to have exactly
the same support as the load, A(w, ). If the load signal is
constant for the duration of the observation period, we can
remove the effect of the load from the attribute X,,(w,7) by
zero-ing the DC coefficient of the DFT. Therefore, in our
evaluation we compare the attributes that arise from time-
varying load traces with constant load traces to isolate the
spectra of the perturbation signals.

The BSS literature [10], [11], [12] often call on the fact that
a suitable linear transform 7*{-}(-,-) promotes approximate
equality in the expression

T*{a(i)}(w, ) - T*{sn(i)}(w,T) = 0,

The approximate separation of the load and the perturbation
signal can be achieved by selecting the set of TF bins 6, where

Vn,w, 7. (8)

the load signal is dominant. If the relation in Eqn. 8 holds,
then an instantaneous estimate of the RAU, «,(w,T) of the
n-th feature is obtained by division
o (w0,7) = ‘ Xp(w,T) _ Xp(w)
XN(va) A(va)
We construct a set of estimators that reflect this crucial
property. The set 6, is determined in this paper by choosing
the frequency bins corresponding to 90% of the power of
a(i). Tt is clear that the instantaneous RAU estimates will
not all be equally useful in our estimate of «,,. We propose
a Power Weighting scheme, C,,(w, 7), that distinguishes be-
tween different instantaneous estimates, «, (w, 7), by encoding
information about the disjointness associated with each TF bin.
This is possible because we know the load, a(4), exactly. The
element-wise weight C,(w,7) = |A(w, 7)X,(w, )| exhibits
the following behaviour in the TF bins 6, active in our
estimators. When X,,(w, 7) = a,, A(w, ) then the associated
weight is C,(w,7) = an|A(w,7)A(w,7)|, which is large
when A(w, ) is large; and small when A(w,7) is small. If
the case should arise that a TF bin is included in error and the
condition |Sy, (w,T)| > |anA(w,T)| holds, then the product
of the terms in |S, (w, 7)A(w, 7)| serves to reduce the effect
of the associated instantaneous RAU estimate, o, (w, 7). A
Power Weighted objective that expresses (Eqn. 8) is,

Ly(eh) = Y (Co(w, 7)ok —an(w,7)Cr(w, 7)) (10)
(w, 7)€l
Solving 0L, /dak = 0 for of, yields a PWE for the RAU of
the n-th attribute, o?,

_ Dwmes, Onlw man(w,7)

, Y(w,T) €604 (9)

ok (11)
" Z(w,r)e(ia C’?L(w7 T)
Remark: The Power Weighting uses a cross-weight
Cp(w,7) = |A(w,7)X,(w,T)|; cross-weighting generally

reduces the risk of divisions by approximately zero, which
potentially arise with an auto-weighting scheme, C,,(w,7) =
|A(w, 7)A(w, T)|. The compactness of the support of the
load means that the standard Maximum Likelihood (ML)
approach for estimating the RAU is corrupted by bins in
which the load is not present. Maximising L(«,,) is equiv-
alent to maximising the likelihood function Ly of a,, e.g.
Lo(arn) = p(Xn (@), Xx (@), A(w)|tn).

L(ay) = — Z | X0 (w, ) — anA(w, 7)|?.
(w,T)€E0;

12)

The perturbation signal in the TF bins where A(w,7) is
dominant, S,,(w, ), is treated as an interfering signal. It is
modelled as complex iid white Gaussian noise, with zero mean
and variance 2. Solving dL/0a,, = 0 for a, yields

* Zweel Re{Xﬂ(va)A(va)}

o o 1AL, )P
This MLE can produce negative values, and the PWE cannot.
Because an increase in the load on the server may cause a
increase/decrease in some server attribute, we correct the PWE
sign by using the sign of the MLE, af, = sgn(a;)al.

13)
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Fig. 2. Eqn. 8: Magnitude spectrogram of (1) a time-varying load (heavy line)
on the server (top to bottom: periodic, flash-crowd and step-increasing) vs. (2)
one of the server attributes under a constant load conditions, e.g. a = 25 users
(lighter line). The time-varying load dominates the constant load attribute in
a small number of low frequency bins (rectangle).

IV. NUMERICAL EVALUATION

We evaluate the claim in Eqn. 8 —that the load signal and the
perturbations in the server’s performance signal are disjoint—
using three traces: a periodic, step-increasing and flash-crowd
trace. We then evaluate the performance of the RAU PWE.
Experiment Set-up: The testbed set-up consists of a Video-
Server (VS) and a Load-Generator (LG) machine, e.g. Dell
PowerEdge R715 2U rack servers, each with 64 GB RAM, two
12-core AMD Opteron processors, a 500 GB hard disk, and a
1 Gb network controller. All machines run Ubuntu 12.04 LTS.
The server machine runs multiple VLC servers (version 2.1.3).
Each VLC server is configured for VoD service. It transcodes
the video and audio streams, and streams the videos over the
network to VoD clients. Every second, the server machine
invokes a SAR. The server is populated with the ten most
popular YouTube videos. An experimental run lasts >15 x 103
seconds. The load-balancer generates a Poisson-distributed
load on the server a(i). The LG dynamically controls the
number of active VoD sessions by spawning and terminating
VLC clients. A new client sends a request for a random video
to a random VLC server on the VS. A full list of the attributes
of the server recorded by SAR and used in the experiments is
given the RAU dashboard in Fig. 3. They can be categorised
as CPU core utilization, memory and swap space utilization,
disk I/O and network statistics. The mean of the Poisson
distribution is modulated using a cosine (with amplitude 20
users, period 360s and an offset of the minimum value of the
trace), a step-increasing function (which increases the number

of users by 5 every 1500s) and a flashcrowd (cf. [13]) in order
to drive the time-varying element of the load.

Are the load and perturbation signals disjoint? Firstly, a
cosine is chosen to drive the mean of the Poisson-distributed
load a(7) because it is time-varying and has compact support.
We compute the magnitude spectrum of a(i) and compare
this magnitude spectrogram with an attribute taken from an
experimental run when the load is constant for all time a = 25
user requests, e.g. the load is not time-varying and s, (i) #
0. In Fig. 2 row 1, this periodic load clearly dominates the
constant-load attribute in the low frequency bins. Then, in row
2 and 3, the flash-crowd and step-increasing load are compared
with the constant-load attribute. It still holds that the support
of the two signals is approximately disjoint. We note that the
flashcrowd is a realistic load signal and examination of its
support provides evidence that PWE will be successful.
PWE Dashboard: Fig. 3 illustrates the sign of the ML
estimates times the logarithm (base-10) of the RAU estimates.
We do not illustrate the MLEs —they are generally very
small. These estimates tell us “by how much” a VoD server
attribute is used by a single user request —they are VoD’s RAU
signature. They are computed by taking an 2!3 sample (=2-
hr) long window to compute our local-in-time DFT of each
attribute. This window is shifted successively by 1 sample,
and a PWE is computed for each attribute for each shift. The
typical PWE is computed by taking the mean of 2000 of these
estimates. For a description of each of these attributes, we
refer the reader to the manual http://linux.die.net/man/1/sar.
Each PWE estimate is illustrated with a dot and its label is
given alternating between the left or right hand side of the
dots. A significant number of the RAU estimates are non-zero
—yielding the signature of VoD. There is a clear correlation
between the RAU estimates learned across the traces, which
illustrates that the estimators are relatively invariant to the
statistics of a load signal, for example, different numbers of
users being active for longer periods on different experimental
runs. In addition, the sign of the estimates is sometimes
switched. We posit that this could be due to the effect of
a particular load pattern on an attribute affecting the MLE.
It is very interesting to see that under different loads the
size of the estimators is larger/smaller. We posit that under
the periodic load the estimators might be a bit numerically
unstable due to the very narrow support of the cosine. If we
compare the periodic case with the flash-crowd and the step-
increasing load we see that the spectrum of the signals is wider
and the PWEs give more stable estimates of the RAU. In terms
of the complexity of the estimators, and the deployment of the
estimators as a sub-routine in a cloud server, computation of
the PWE costs 25F" + 7 FLOPS per estimate, where F' is the
number of elements in #;, which is cheap.

V. CONCLUSIONS

We have designed and demonstrated the application of RAU
estimators. We posit that the RAU PWE compute accurate
estimates of the usage of the VoD server, irrespective of the
load pattern placed on the server. This motivates the usage of
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Fig. 3. PWE Dashboard: Each dot represents an RAU estimate for an attribute computed for the flash-crowd, step-increasing and periodic load scenario.
Attribute labels are listed successively on the LHS and then RHS of the dots for illustration clarity. There is significant correlation in the signature learned
for VoD workload, which is not significantly affected by different load patterns. The sign of the associated MLEs is affected by the workload.

these PWE as a VoD signature, which could be used in run-
time data-centre reconfiguration routines, or fault diagnosis.
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