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Abstract—This paper presents a novel reduced-rank approach
for implementing Volterra filters with reduced complexity. Such
an approach is based on the application of the singular value
decomposition to a new form of coefficient matrix obtained by
exploiting the representation based on diagonal coordinates of the
Volterra kernels. The result is a parallel structure of extended
Hammerstein models in which each branch is related to one
of the singular values of the coefficient matrix. Then, removing
the branches related to the smallest singular values, an effective
reduced-complexity Volterra implementation is obtained. Simu-
lation results are presented to confirm the effectiveness of the
proposed approach.

Index Terms—Linear-in-the-parameters filters, reduced-rank
implementation, Volterra filters.

I. INTRODUCTION

In general, a nonlinear filter is defined simply as a filter

for which the superposition principle does not hold [1]. This

somewhat broad definition poses a big challenge to researchers

and engineers, since it makes the development of a general

nonlinear filtering theory a very difficult or almost impossible

task. To overcome this problem, the study of nonlinear filters

is usually carried out separating such filters into different

classes considering some other particular characteristics. In

this context, a class of nonlinear filters that has attracted

attention over the last decade is that of the linear-in-the-

parameters (LIP) filters [1].

A linear dependence between the filter output and the filter

coefficients is what characterizes the members of the LIP

class. As described in [1], this characteristic is very interesting

from the practical point of view, since the least squares

methods and adaptive algorithms applied to linear filters can

be suitably extended to deal with LIP filters. Some of the

members of the LIP class have the additional characteristic

of being universal approximators for causal time-invariant

finite-memory continuous nonlinear systems, according to the

Stone-Weierstrass theorem [1]–[6]. Among these members, the

Volterra filter is the precursor and still the most popular [1],

[2], [7]–[9].

The aforementioned universality of the Volterra filter comes

at the cost of a high number of parameters/coefficients [2],

[8]. Moreover, this number of parameters grows exponentially

with the memory size, which often leads to a computational

cost that forbids the application of the Volterra filter. As a

result, a considerable research effort has been devoted to

the development of implementations of Volterra filters with

reduced computational burden. One interesting approach used

for obtaining this type of implementation is based on applying

matrix or tensor decompositions to structured representations

of Volterra kernels [10]–[15]. In general, this approach results

in parallel structures in which each branch has a different level

of significance usually related to one of the singular values of

a matrix or tensor of coefficients. Then, neglecting the least

significant branches (related to the smallest singular values),

an effective reduced-rank implementation with reduced com-

putational complexity is obtained.

In this research work, we introduce a novel reduced-rank

approach for implementing Volterra filters. The proposed

approach is based on the application of the singular value

decomposition to a new form of coefficient matrix obtained

by exploiting the diagonals of the Volterra kernels. As a

result, a parallel structure composed of extended Hammerstein

models is obtained and, neglecting the branches of such an

structure related to the smallest singular values, an effective

reduced-complexity implementation is achieved. Results of a

case study involving a Volterra kernel obtained from a real-

world echo canceling application are presented to illustrate the

applicability of the proposed approach.

The remainder of this paper is organized as follows. In

Section II, the Volterra filter, its diagonal-coordinate repre-

sentation, and its reduced-rank implementations are briefly

reviewed. Section III presents the contributions of this paper,

including the new strategy to represent the Volterra coefficient

matrix as well as the proposed structure for implement-

ing Volterra filters. Sections IV and V present, respectively,

simulation results and concluding remarks.

II. BACKGROUND ON VOLTERRA FILTERS AND

REDUCED-RANK IMPLEMENTATIONS

A truncated Volterra filter is composed of P kernels, each

corresponding to a distinct nonlinearity order [2]. The output

of such a filter is given by

y(n) =

P
∑

p=1

yp(n) (1)

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1778



where

yp(n) =

N−1
∑

m1=0

· · ·

N−1
∑

mp=0

hp(m1,m2, . . . ,mp)×

p
∏

k=1

x(n−mk) (2)

is the output of the pth-order kernel, x(n) is the input signal,
and N is the memory size. Moreover, hp(m1,m2, . . . ,mp)
(withm1,m2, . . . ,mp ranging from 0 to N ) represent the pth-
order coefficients or parameters of the Volterra filter.

Now, defining a first-order coefficient vector as h1 =
[h1(0) h1(1) · · · h1(N − 1)]T and a first-order input vector

as x1(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T, the output
of the first-order kernel can be written as

y1(n) = h
T
1 x1(n). (3)

Note that (3) is equivalent to the input-output relationship of

an FIR (linear) filter and, thus, the first-order kernel is in fact

a linear kernel. The remaining kernels (those with p ≥ 2) are
the nonlinear kernels. In general, the strategies for reducing

the complexity of Volterra filters are applied to the nonlinear

kernels, since they contain most of the filter coefficients. Thus,

for the sake of simplicity, this paper is focused primarily on

the implementation of the second-order kernel.

A. Second-order Kernel

The input-output relationship of the second-order kernel is

obtained by using p = 2 in (2), resulting in

y2(n) =

N−1
∑

m1=0

N−1
∑

m2=0

h2(m1,m2)x(n−m1)x(n−m2). (4)

Now, considering the indices m1 and m2 of the second-order

coefficients h2(m1,m2) as coordinates of a Cartesian space,

the following coefficient matrix is defined:

H2=











h2(0, 0) h2(0, 1) · · · h2(0, N−1)
h2(1, 0) h2(1, 1) · · · h2(1, N−1)

...
...

. . .
...

h2(N−1, 0) h2(N−1, 1) · · · h2(N−1, N−1)











. (5)

Thus, the output of the second-order kernel can be written as

y2(n) = x
T
1 (n)H2x1(n). (6)

B. Redundancy-removed Implementation

A more interesting approach for implementing nonlinear

kernels is based on the so-called redundancy-removed (also

known as triangular) representation [2], [8]. This representa-

tion of Volterra kernels is obtained by considering that the

coefficients with permutated indices are in fact related to the

same cross-product of the input signal [e.g., both h2(0, 1) and
h2(1, 0) are multiplied by x(n)x(n−1) for evaluating y2(n)].
Thus, such coefficients can be merged into a single coefficient

(as described in [16]) with no loss of generality. As a result,

the output of the second-order kernel becomes

y2(n) =

N−1
∑

m1=0

N−1
∑

m2=m1

h2(m1,m2)x(n −m1)x(n−m2) (7)

with h2(m1,m2) denoting the coefficients of the redundancy-
removed representation. Moreover, defining a redundancy-

removed second-order coefficient matrix as

H2 =











h2(0, 0) h2(0, 1) · · · h2(0, N − 1)
0 h2(1, 1) · · · h2(1, N − 1)
...

...
. . .

...

0 0 · · · h2(N − 1, N − 1)











(8)

(7) can be rewritten as y2(n) = x
T
1 (n)H2x1(n).

C. Implementation Based on Diagonal Coordinates

Another interesting strategy for implementing Volterra fil-

ters is based on representing nonlinear kernels using diagonal

coordinates [2], [16]. For the case of the second-order kernel,

such representation is obtained by introducing the following

change of coordinates in (7): m1 = s and m2 = s + r. In
doing so and after exchanging the order of the summations in

the resulting expression, one obtains

y2(n) =
N−1
∑

r=0

N−1−r
∑

s=0

h2(s, s+ r)x(n − s)x(n − s− r). (9)

Now, defining a partial second-order coefficient vector as

h̀2,r = [h2(0, r) h2(1, r−1) · · · h2(N−1−r,N−1)]T (10)

and a corresponding input vector as

x̀2,r(n) = [x(n)x(n − r) x(n− 1)x(n− 1− r)

· · · x(n−N + 1 + r)x(n −N + 1)]T (11)

(9) can be rewritten as

y2(n) =
N−1
∑

r=0

h̀
T
2,rx̀2,r(n). (12)

As pointed out in [17], (10) is formed by the elements of the

rth diagonal of (8), while (11) is composed of delayed versions
of x(n)x(n − r). Consequently, each product h̀T

2,rx̀2,r(n) in
(12) corresponds to the filtering of the signal x(n)x(n − r)
by an FIR filter whose coefficients are the elements of the rth
diagonal of (8). Thus, the diagonal-coordinate representation

leads to the parallel implementation illustrated in Fig. 1.

In principle, the representation based on diagonal coordi-

nates of a Volterra kernel has the same number of parameters

as the redundancy-removed representation. However, in many

real-world applications, the coefficients close to the main

kernel diagonal are the most significant ones [17]–[20]. Thus,

effective reduced-complexity Volterra implementations can be

obtained simply by neglecting the coefficients far from the

main kernel diagonal, which implies removing the blocks in

the lower positions of the parallel structure of Fig. 1.
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D. Reduced-rank Implementations

As described in [10]–[15], effective structures for imple-

menting Volterra filters with reduced complexity can also

be obtained by exploiting matrix or tensor decompositions.

Aiming to illustrate the basic characteristics of these structures,

we consider here the approach for implementing second-order

kernels described in [12]. Such an approach is based on the

decomposition of the symmetric matrix H2 [see (5)] by using

the singular value decomposition, which results in

H2 =

N−1
∑

k=0

λkh̃2,kh̃
T
2,k (13)

where λk and h̃2,k are, respectively, the kth singular value and
the kth singular vector of H2. Then, substituting (13) into (6)

and manipulating the resulting expression, one obtains

y2(n) =
N−1
∑

k=0

λk[x
T
1 (n)h̃2,k]

2. (14)

Since x
T
1 (n)h̃2,k corresponds to the output of an FIR filter

whose coefficients are the elements of h̃2,k, one notices that

(14) corresponds to the parallel structure shown in Fig. 2. Each

branch of this parallel structure is composed of an FIR filter

with its squared output multiplied by the kth singular value

of H2. Then, removing the branches comprising the smallest

singular values, an effective reduced-complexity implementa-

tion is obtained. In general terms, the approaches from [10]–

[15] lead to parallel structures in which this kind of singular-

value-dependent pruning can be carried out to obtain reduced-

complexity implementations.

III. PROPOSED APPROACH

In this section, a novel approach for implementing Volterra

filters with reduced-rank (and thus reduced computational

complexity) is discussed. Such an approach is based on

defining a new form to represent the coefficient matrix in a way

that the dominance of the main kernel diagonal can also be

exploited when performing the singular value decomposition.

Thus, for the second-order kernel, the idea is to define the

coefficient matrix considering the partial second-order coeffi-

cient vectors h̀2,0, h̀2,1, . . . , h̀2,N−1 [see (10)] arising from the

representation based on diagonal coordinates. This is, however,

...
...

h̀2,0

h̀2,1

h̀2,N−1

+

+×

×

×

...

z−1

z−1

...

x(n) y2(n)

h2

Fig. 1. Block diagram of the implementation based on diagonal coordinates
of a second-order Volterra kernel.

h̃2,0

h̃2,1

h̃2,N−1

...

+

+

...
...

...

(.)2

(.)2

(.)2

λ0

λ1

λN−1

x(n) y2(n)

h2

Fig. 2. Block diagram of the implementation of a second-order kernel based
on the singular value decomposition.

not a straightforward task, since such vectors do not have

the same length (the length of h̀2,r is in fact N − r). To
circumvent this problem, the strategy used here is to extend

h̀2,0, h̀2,1, . . . , h̀2,N−1 up to length N . As a result, we define

the following extended version of h̀2,r:

h̄2,r = [h2(0, r) h2(1, r−1) · · · h2(N−1, N−1+r)]T. (15)

Now, considering (15), a diagonal-coordinate coefficient ma-

trix can be defined as

H̄2 = [h̄2,0 h̄2,1 · · · h̄2,N−1]. (16)

Similarly, extending x̀2,r(n) up to length N , we get

x̄2,r(n) = [x(n)x(n − r) x(n− 1)x(n− 1− r)

· · · x(n−N + 1)x(n−N + 1− r)]T (17)

which allows defining the following diagonal-coordinate input

matrix:

X̄2(n) = [x̄2,0(n) x̄2,1(n) · · · x̄2,N−1(n)]. (18)

Then, considering (16), (18), and the properties of the vector-

ization operator described in [21], the output of the second-

order kernel is written as

y2(n) = vec[X̄2(n)]
Tvec(H̄2) = tr[X̄T

2 (n)H̄2] (19)

with vec(·) representing the matrix vectorization [21] and tr(·)
the matrix trace.

Now, aiming to obtain the proposed reduced-rank imple-

mentation, the idea is to apply a singular value decomposition

to H̄2. Thus, one has

H̄2 = UΛVT (20)

where Λ is a diagonal matrix composed of the singular values

of H̄2, U is a unitary matrix whose columns are the singular

vectors of H̄2H̄
T
2 , and V is another unitary matrix whose

columns are the singular vectors of H̄T
2 H̄2. By substituting

(20) into (19) and considering the cyclic property of the trace

operator [22], we obtain

y2(n) = tr[X̄T
2 (n)UΛVT] = tr[VT

X̄
T
2 (n)UΛ] (21)

which, considering the properties of the vectorization operator

[21], is rewritten as

y2(n) = vec[X̄2(n)V]Tvec[UΛ]. (22)
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The first vectorization operation in the right-hand side (RHS)

of (22) can be written as

vec[X̄2(n)V] =











X̄2(n)v0

X̄2(n)v1

...

X̄2(n)vN−1











(23)

with vr representing the rth column of V. Moreover, since

Λ is a diagonal matrix composed of the singular values λ̄0 to

λ̄N−1 of H̄2, the second vectorization operation in the RHS

of (22) results in

vec[UΛ] = [λ̄0u
T
0 λ̄1u

T
1 · · · λ̄N−1u

T
N−1]

T

= [ĥT
2,0 ĥ

T
2,1 · · · ĥ

T
2,N−1]

T (24)

with ĥ2,r = λ̄rur and ur representing the rth column of U.

Then, considering (23) and (24), (22) is rewritten as

y2(n) =

N−1
∑

k=0

v
T
k X̄

T
2 (n)ĥ2,k. (25)

Now, after analyzing in detail the structure of matrix X̄2(n)
shown at the bottom of this page, one notices that all rows

of such a matrix are delayed versions of the first line. Then,

defining a vector

ẋ2(n) = [x2(n) x(n)x(n−1) · · · x(n)x(n−N +1)]T (26)

the transpose of X̄2(n) can be written as X̄
T
2 (n) = [ẋ2(n)

ẋ2(n− 1) · · · ẋ2(n−N + 1)], resulting in

x̂
T
2,k(n) = v

T
k X̄

T
2 (n) = [vT

k ẋ2(n) v
T
k ẋ2(n− 1)

· · · v
T
k ẋ2(n−N + 1)]. (27)

Finally, substituting (27) into (25), the output of the second-

order kernel is rewritten as

y2(n) =

N−1
∑

k=0

x̂
T
2,k(n)ĥ2,k. (28)

Note that since x̂
T
2,k(n) is composed of delayed elements of

v
T
k ẋ2(n), we can verify that the kth term of the summation

in (28) is in fact the filtering of a signal vT
k ẋ2(n) using an

FIR filter with coefficient vector ĥ2,k. Moreover, since

fk(n) = v
T
k ẋ2(n) = vk,0x

2(n) + vk,1x(n)x(n − 1)+

· · ·+ vk,N−1x(n)x(n −N + 1) (29)

one notices that v
T
k ẋ2(n) corresponds to the output of a

polynomial nonlinearity with coefficients given by the ele-

ments vk,0, vk,1, . . . , vk,N−1 of vk and variables given by

x(n), x(n)x(n−1), . . . , x(n)x(n−N+1). Thus, we conclude

f0

f1

fN−1

ĥ2,0

ĥ2,1

ĥ2,N−1

...

+

+

...
...

...

x(n) y2(n)

h2

Fig. 3. Proposed parallel Hammerstein implementation of a second-order
Volterra kernel.

that (28) corresponds to the filtering of x(n) by a structure

composed of N parallel extended Hammerstein models, as

shown in Fig. 3. We use here the extended qualifier for these

Hammerstein models due to the fact that typical Hammer-

stein models comprise memoryless nonlinearities, whereas the

nonlinearities of the models illustrated in Fig. 3 indeed have

memory.

The proposed structure has some interesting characteristics

that are worth being mentioned, namely:

1) Representation capability. Due to the extension of co-

efficient vectors that has resulted in (15), the proposed

structure is in fact capable of representing not only a

Volterra kernel with memory N , but also parts of the

kernel with memory size 2N − 1. This is particularly
interesting from the application point of view, since the

impact of choosing a reduced memory size is smaller.

2) Computational complexity. Considering the second-

order kernel, the number of coefficients in each branch

of the proposed structure is the same as that of the

parallel-cascade structure from [14]. This number is

higher than those of the structure from Fig. 2 and of

the PARAFAC-Volterra implementation from [15]. How-

ever, this higher number of coefficients is compensated

by the extended representation capability of the proposed

structure.

3) Diagonal truncation. The cost for implementing the

proposed structure can also be reduced by associating

a truncation of the number of diagonals with the afore-

mentioned branch pruning. In this case, the number of

columns of H̄2 and X̄2 will be reduced, resulting in

smaller number of terms in f0(n), . . . , fN−1(n).
4) Extension to higher-order kernels. The proposed ap-

proach can also be used for obtaining implementations

of higher-order kernels either by redefining the coeffi-

cient and input matrices given by (16) and (18) or by

developing a strategy based on tensor decomposition.

X̄2(n) =











x2(n) x(n)x(n − 1) · · · x(n)x(n −N + 1)
x2(n− 1) x(n− 1)x(n− 2) · · · x(n− 1)x(n−N)

...
...

. . .
...

x2(n−N + 1) x(n−N + 1)x(n−N) · · · x(n−N + 1)x(n− 2N + 2)










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IV. SIMULATION RESULTS

In this section the effectiveness of the proposed approach

for obtaining reduced-complexity implementations of Volterra

filters is assessed. To this end, we consider a case study in

which different reduced-rank approaches are applied to the

implementation of a second-order Volterra kernel. Besides

the proposed approach, the other reduced-rank approaches

considered here are the one based on the singular value decom-

position (SVD-based) from [12] and the parallel-cascade (PC)

approach from [14] (without exploiting kernel symmetry). The

approach based on the PARAFAC decomposition from [15]

is not considered, since for second-order kernels, it leads to

a structure similar to that of the aforementioned SVD-based

approach. The kernel to be implemented corresponds to the

second-order part of an echo path model obtained from a real-

world network echo cancellation problem, involving an analog

telephone adapter (ATA) used in VoIP systems. This kernel

has memory size 25, 325 coefficients, and the cost of its stan-

dard implementation is of 674 (multiplication and addition)

operations per sample. The effectiveness of the reduced-rank

approaches is measured in terms of normalized misalignment,

which is defined as 10 log10(||H2k −H2rr||
2
F/||H2k||

2
F) with

|| · ||F representing the Frobenius norm, H2k, the coefficient

matrix of the kernel to be implemented, and H2rr, the coeffi-

cient matrix obtained by using the reduced-rank approach. For

all approaches, the number of branches is varied from 0 to 25

(i.e., from the minimum to the maximum) and, to make a fair

comparison, the required number of operations per sample is

considered in lieu of the number of branches. Fig. 4 shows

the obtained curves of normalized misalignment as a function

of number of operations per sample for each reduced-rank

approach considered. A dotted line is also included in this

figure to indicate the complexity of the standard Volterra (SV)

implementation of the kernel considered. This line corresponds

to a limit after which it is no longer interesting the use

of reduced-rank implementations since they cost more than

the standard implementation. From Fig. 4, one notices that,

for any level of computational burden below that of the SV

implementation, a smaller value of normalized misalignment

is obtained by the proposed approach as compared with the

other approaches considered.

V. CONCLUSIONS

In this paper, a novel reduced-rank approach for implement-

ing Volterra filters was presented. This approach is based on

first defining a new form of diagonally-oriented coefficient

matrix and, then, applying the singular value decomposition

to such a matrix. As a result, the Volterra input-output rela-

tionship can be rewritten, leading to a parallel implementation

composed of extended Hammerstein models. The applicability

of the proposed approach was assessed by means of a case

study.
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