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Universitat Politècnica de València, Camino de Vera s/n, 46022 Valncia, Spain

Email: {frapeago,vnaranjo}@upv.es
†Biomedical Technology Center, University of Münster, Münster, Germany

‡Biophotonics Research Unit, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
§Biomedical Physics, School of Physics, University of Exeter, Exeter, UK

Abstract—A multilevel framework for the multiclass classi-
fication of spectra extracted from Fourier transform infrared
images is described. This learning structure was employed to
discriminate the spectra extracted from hyperspectral images of
two batches of four different skin cultured cells (two normal and
two tumor), where the cells of one batch had been stained with
fluorescence live cell dyes. Different options were explored in each
stage of the framework, specifically in the spectral pre-processing
and the employed classification algorithm. Special care was taken
to optimize the learning models and to objectively estimate
the generalization performance by means of cross-validation. A
very high discriminative performance was obtained for all the
unstained skin cell types. However, the presence of the stains
introduces spectral artifacts that worsen the class separation, as
has been demonstrated in several classification experiments.

I. INTRODUCTION

Fourier transform infrared (FTIR) microspectroscopy is an

emerging technology that has demonstrated a great poten-

tial for the diagnosis of different kinds of cancer [1], [2].

This technique provides spectra with several hundreds or

even thousands of absorbance values, registered at different

wavenumbers (inverse of wavelengths) in the near- and mid-

infrared region. During the last decade, the capability of FTIR

devices has evolved from the measurement of single-point

spectra to the acquisition of hyperspectral images, what allows

to record a greater amount of data within a shorter time [3].

In FTIR images, each pixel has an associated spectrum

that informs of the biochemical structure of a microscopic

region of the space. These spectra can be processed through

multivariate analysis to perform an objective characterization

of diverse biological materials [4]. One of the specific uses is

the categorization of fixed cytological samples from different

types of diseases [5]. Due to the novelty of this technique,

few cytological studies exist where an objective classification

with a quantitative evaluation has been performed and, to our

knowledge, no one has focused on skin cancer cells [6].

This study presents a framework for the multiclass classi-

fication of four types of skin cells (two normal and two can-

cerous) based on their FTIR spectra, giving special attention

to the processing and handling of these signals. These cells

were cultured under standard cell culture and properly treated

in order to acquire FTIR images. Besides, each cell line was

divided into two batches and one of them received a staining

treatment with different fluorescence live cell dyes. These

stains enable to create images by fluorescence microscopy that

can be used as a ground truth in a possible mixture of different

cell types. Such a mixture of skin cells pretends to be a proof

of concept in a future advanced demonstration of the diagnosis

properties of FTIR spectra in this type of cancer. However, the

possible influences of the dyes must be previously evaluated.

The main goal is to find out if FTIR spectroscopy provides

enough information to accurately characterize each skin cell

line. An additional objective is to assess if the presence of the

fluorescence dyes can worsen this classification.

This paper is organized as follows: Sec. II describes the

characteristics of the used dataset of skin cells and details the

classification framework that has been applied and assessed

systematically in four different experiments; Sec. III presents

the quantitative and qualitative results of the four classification

experiments, which are discussed in Sec. IV; finally, the main

conclusions of the study are summarized in Sec. V.

II. MATERIALS AND METHODS

A. Dataset

Four different skin cell lines, two non-tumor (NIH-3T3

fibroblasts, HaCaT keratinocytes) and two tumor cells (A-375,

SK-MEL-28 melanoma cells), were separately cultured and

divided into two different batches of samples. The samples

of one batch were stained with different fluorescence live cell

dyes for each cell type and the other batch of samples remained

unstained. The fluorescence dyes were chosen in such a way

that an overlap of fluorescence emission spectra was prevented

meanwhile the cell viability was preserved. Finally, all the

samples followed a standardized preparation protocol suitable

for FTIR spectroscopic measurements [7].

A hyperspectral FTIR image was acquired from each one

of the eight samples by using a FTIR Agilent imaging system

with a focal plane array (FPA) detector of 128×128 pixels.

Each pixel had an equivalent size of 5.5 × 5.5 μm2 in the

image, which is a good compromise between separation of

cells and coverage of sufficient cellular regions to obtain
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average fingerprints. The spectra were acquired in transmission

mode in the interval of wavenumbers 1000-3800 cm−1 with

a spectral resolution of 4 cm−1. In order to improve the

signal-to-noise ratio, 128 scans of the same region were co-

added. Additionally, a background FTIR image of the substrate

without any sample was acquired as a reference to convert the

recorded intensity spectra to absorbance magnitude [2]. As a

result, the dataset comprises 8 hyperspectral FTIR images of

128×128 pixels corresponding to each cell line and staining

option.

B. Experimental setup

Four multiclass classification experiments with different

training and test datasets are proposed to evaluate the hypothe-

ses exposed in Sec. I:

• Experiment 1: the training and test datasets are composed

of the extracted spectra from the unstained batch of

samples, which are classified into the four cell lines

through nested cross-validation (CV). This is the most

important experiment because it assesses the discrimina-

tion capability of FTIR spectra without introducing any

staining artifact. Therefore, its performance is taken as a

reference for the rest of experiments.

• Experiment 2: is analogous to Experiment 1 but using the

stained samples for nested CV. It serves to evaluate the

possible changes in the classification performance due to

the addition of the fluorescence stains.

• Experiment 3: the classification algorithms are trained

by CV with the stained spectra and tested in the whole

unstained dataset. In this experiment two effects are

jointly evaluated: the generalization capability between

spectra from different images and, again, the possible

influence of the staining.

• Experiment 4: is equivalent to Experiment 3 but taking

the unstained samples for training by CV and the stained

spectra for testing. The same effects are explored, too.

C. Classification framework

The general classification pipeline followed in all the ex-

periments described in Sec. II-B is presented in Fig. 1. As

stated by the No Free Lunch Theorem, there are no context-

or problem-independent reasons to favor one learning method

over another, each dataset may have a different structure that

will require a different solution [8], [9]. Therefore, the choices

at each stage of the classification pipeline should be based

on the performance of the classifier on an independent test

dataset. The IRootLab [10] and the LibSVM [11] toolboxes

were linked with our in-house MATLAB algorithms to carry

out the whole pipeline. The different explored alternatives and

the aims of each step of the workflow are detailed below.

1) Spectra Extraction: The main purpose of this stage is to

separate the spectra associated with cells from the substrate,

whose presence may lead to misclassification. To that end,

a binary mask must be obtained from each hyperspectral

data cube. These masks mark the pixels whose spectra are

retained. In order to illustrate the problem and as a reference
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Fig. 1. Diagram of the classification pipeline.

(a) (b) (c)

Fig. 2. Spectra extraction in stained HaCaT sample: (a) image taken in
the visible spectrum range; (b) gray image extracted from the hyperspectral
FTIR image; (c) final mask with relevant pixels for classification in black and
discarded pixels (substrate) in white. Green scale bars represent 200 μm.

TABLE I
NUMBER OF EXTRACTED SPECTRA FOR EACH SKIN CELL LINE AND

STAINING OPTION, SUITABLE FOR CLASSIFICATION.

A-375 HaCaT NIH-3T3 SK-MEL-28

Unstained 7818 2854 7758 7872
Stained 7931 5026 5194 7432

for comparison, Fig. 2a shows a white light image (taken

in the visible spectrum range) of a region of the stained

HaCaT sample where the cells have a darker intensity than

the substrate. This white light image was not available for all

the samples and only covered a partial region of them.

Spectra were previously smoothed by a Savitzky-Golay

(SG) filter, cropped to the fingerprint region and corrected

by Rubberband baseline correction (see Sec. II-C2). No nor-

malization step was applied in order to reveal tissue structures

primarily based on absorbance intensity [4] and, thus, high-

lighting the cells (high absorbance) over the substrate (low

absorbance). The standard deviation of each pixel’s spectrum

was computed as an integral absorbance measurement, getting

a value for each pixel. The computed values were transformed

to grayscale in each sample to obtain a gray image. The gray

image of the stained HaCaT sample is presented in Fig. 2b,

whose intensities have been inverted for comparison with

Fig. 2a. Eventually, the popular Otsu’s algorithm was used

to compute automatic thresholds and convert each gray image

to binary (Fig. 2c).

As a result, a different number of spectra were extracted for

each cell line and staining option due to the distinct growth

properties of the cell types (Tab. I).

2) Pre-processing: Pre-processing is the most important

step in the workflow. High knowledge of spectroscopy theory

is required to compensate the different physical phenomena

that occur during the acquisition of FTIR data and that can

worsen the classification. This is still an open field with
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Fig. 3. Mean spectra of each skin cell line in (a)–(c) unstained and (d)–(f)
stained samples for {(a),(d)} rubber, {(b),(e)} diffsg1 and {(c),(f)} rmiesc
pre-processing.

no standard solutions, the only way to check if one spe-

cific pre-processing is better is to compare its classification

performance. As a guideline, different combinations of the

methods suggested in [4], [9] were used in this work. Deeper

description of the methods applied in each stage can be found

in [12].

Two fixed steps were sequentially applied: Savitzky-Golay
smoothing, to reduce the random noise of the spectra, whose

relevant parameters were a window of 9 samples and a 2nd

order fitting polynomial; crop to band (1000-1800 cm−1),
which is the so-called fingerprint region where the vibration

modes of the most relevant biomolecules are located [2].

After these common steps, three different alternatives were

explored. The objectives of these three options are the same:

firstly, to reduce baseline artifacts that result from scattering;

secondly, to normalize the spectra to account for confounding

factors such as varying thickness and to highlight differences

in biochemical structure [4]. The three options have been

defined by a short word:

• rubber: rubberband baseline correction followed by

Amide I peak normalization (∼1650 cm−1).

• diffsg1: first derivative transformation with a SG filter

(window of 9 samples and a 2nd order fitting polynomial)

and vector normalization.

• rmiesc: resonant Mie scattering correction with matrigel
reference spectrum [13], which implicitly performs a

normalization.

Fig. 3 shows the mean spectra of each cell line for the two

staining options with the three pre-processing alternatives.

3) Feature Extraction: Principal Component Analysis

(PCA) has been employed to reduce the dimensionality of the

spectra. The objectives are to decrease the computational cost

and to improve the classification by keeping the most relevant

features. The number of principal components (PCs) to retain

is one of the parameters that was subject to optimization by

cross-validation. The studied values of PCs ranged from the

first 10 to 100 in steps of 10.

4) Classification: In this step, a multiclass classification

model is trained with a set of spectra and used to categorize

independent test spectra as one of the four cell types. Thorough

explanations of the used methods can be found in [8], [14].

The four employed algorithms are: k-Nearest-Neighbor
(KNN) classifier, where the number of neighbors k was

explored from 1 to 9; Naive Bayes classifier (NB); Linear
Discriminant Analysis (LDA); Support Vector Machine (SVM)

with a linear kernel, where the cost parameter C was varied in

the interval [2−5, 29] in steps of 22. In SVM, the one-against-
one approach for multiclass classification was applied.

Another important component of the classification is the

metric for its evaluation. A little imbalance exists between the

four classes of the dataset (Tab. I), reaching almost a 3:1 ratio

in unstained samples. To avoid favoring the majority classes,

the Balanced Accuracy (BA) was used to select the optimal

models and to assess the final multiclass classifications. BA is

the mean of the accuracies for each class and is defined as:

BA(%) =
1

N

N∑

i=1

cii∑N
j=1 cij

· 100, (1)

where N is the number of classes (4 in this case) and cij is

the number of spectra of class i classified as class j.

5) Cross-Validation: Special care was taken to estimate

the generalization performance of the learning framework on

independent test data and to select the complexity of the

models while minimizing possible overfitting [14].

A nested CV was performed in Experimets 1 and 2 with

two loops, named outer and inner loop. In the outer loop,

spectra were split into five folds by dividing each image in five

vertical strips with equal number of extracted spectra in order

to maintain the original class proportions. For each iteration

of the outer loop, one of the folds was considered as the test

set and left out of the inner loop. In the inner loop, the spectra

of the four remaining folds were again split into five folds by

considering their spatial proximity in the original images. In

each iteration of the inner loop, one of the last five folds was

considered as the validation set and was used to evaluate the

performance of the model that was trained with the spectra of

the other four folds. The main objective of the inner loop is to

find the model with higher mean BA by making an exhaustive

search of the hyperparameters (no. of PCs, k in KNN and C
in SVM). Finally, the optimal hyperparameters were used to

train a model with all the spectra of the four original folds of

the outer loop and its performance was assessed on the left

test spectra. As a result, five values of BA were obtained, one

for each iteration of the outer loop.

The evaluation is less complex in Experiments 3 and 4.

In those trials, one of the batches of spectra (unstained or

stained) is considered as the independent test set. The other

batch is used to perform an optimization process equivalent

to the inner loop of the previously described nested CV. The

whole training batch of spectra is used to train the final model

with the optimal hyperparameters, which is evaluated in the

test set to get a single value of BA.
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A-375 HaCaT NIH-3T3 SK-MEL-28

Fig. 4. Color code to represent the predicted labels for pixels in the images
of qualitative results. White pixels represent substrate.

TABLE II
BALANCED ACCURACY (MEAN ± STD) IN NESTED CV OF THE UNSTAINED

SAMPLES (EXPERIMENT 1)

rubber diffsg1 rmiesc

KNN 78.6 ± 5.9 84.1 ± 4.4 86.3 ± 5.1
NB 78.7 ± 2.9 81.6 ± 4.9 76.8 ± 5.0

LDA 93.4 ± 3.9 93.6 ± 3.7 90.3 ± 5.8
SVM 93.8 ± 3.6 93.8 ± 3.8 92.4 ± 4.5

A-375 HaCaT NIH-3T3 SK-MEL-28

Fig. 5. Qualitative results in nested CV of the unstained samples (Experi-
ment 1) for the combination rubber+SVM. Green scale bars represent 200 μm.

TABLE III
BALANCED ACCURACY (MEAN ± STD) IN NESTED CV OF THE STAINED

SAMPLES (EXPERIMENT 2)

rubber diffsg1 rmiesc

KNN 68.4 ± 5.7 72.3 ± 6.1 74.7 ± 5.6
NB 56.9 ± 5.1 58.6 ± 7.4 59.2 ± 4.3

LDA 79.1 ± 3.7 80.5 ± 2.9 77.1 ± 4.9
SVM 82.4 ± 3.4 83.6 ± 3.7 79.9 ± 4.0

A-375 HaCaT NIH-3T3 SK-MEL-28

Fig. 6. Qualitative results in nested CV of the stained samples (Experiment 2)
for the combination diffsg1+SVM. Green scale bars represent 200 μm.

III. RESULTS

The performance of the proposed classification framework

was assessed in the available dataset through four different ex-

periments, such as was detailed in Sec. II. For each experiment,

the overall quantitative results in terms of BA are presented

for every combination of pre-processing (Sec. II-C2) and

classification algorithm (Sec. II-C4). The predicted labels of

the best combinations were selected to construct pseudocolor

images by using the color code shown in Fig. 4. The aim of

these images is to obtain deeper information about why the

misclassification may occur even in the best scenario.

In Experiments 1 and 2, the five values of BA obtained by

nested CV were used to compute their mean and standard devi-

ation (std), as can be seen respectively in Tabs. II and III. The

TABLE IV
BALANCED ACCURACY IN CLASSIFICATION OF THE UNSTAINED SAMPLES,

USING THE STAINED SAMPLES FOR TRAINING (EXPERIMENT 3)

rubber diffsg1 rmiesc

KNN 47.0 49.4 31.7
NB 41.8 41.4 46.0

LDA 62.2 56.3 61.9
SVM 66.9 60.5 60.6

A-375 HaCaT NIH-3T3 SK-MEL-28

Fig. 7. Qualitative results in the classification of the unstained samples,
using the stained samples for training (Experiment 3), for the combination
rubber+SVM. Green scale bars represent 200 μm.

TABLE V
BALANCED ACCURACY IN CLASSIFICATION OF THE STAINED SAMPLES,

USING THE UNSTAINED SAMPLES FOR TRAINING (EXPERIMENT 4)

rubber diffsg1 rmiesc

KNN 50.4 40.9 42.9
NB 51.3 49.0 34.5

LDA 58.8 58.6 59.3
SVM 48.0 49.8 44.7

A-375 HaCaT NIH-3T3 SK-MEL-28

Fig. 8. Qualitative results in the classification of the stained samples,
using the unstained samples for training (Experiment 4), for the combination
rmiesc+LDA. Green scale bars represent 200 μm.

most optimistic combinations of pre-processing and classifica-

tion algorithm (highest mean-std) were selected to represent

the qualitative results. To that end, the predicted labels in the

test sets of the nested CV were joined to create pseudocolor

labelled images for each sample of the batches (Figs. 5 and 6).

In Experiments 3 and 4, a single value of BA was computed

for each combination of pre-processing and classification

algorithm with the corresponding test set. These values are

presented in Tabs. IV and V. The best combination (highest

BA) was selected in each experiment to construct the pseudo-

color images shown in Figs. 7 and 8.

IV. DISCUSSION

Several observations may be inferred from the results pre-

sented in Sec. III. As can be seen in Tab. II, the mean BA in

the Experiment 1 is higher than 90% with a std around 4%

for all the pre-processing options in LDA and SVM classifiers.

These values demonstrate the good discrimination capability
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of FTIR spectra from unstained skin cells even independently

of the applied pre-processing. The qualitative results for the

most optimistic combination (Fig. 5) inform of a good overall

classification in all the samples. Besides, the misclassifications

take place mainly in isolated regions or in borders of clustered

cells. These mistakes may be due to a suboptimal removal of

spectra associated to substrate before the classification and also

to an imperfect correction of scattering artifacts.

The overall results are a bit worse in Experiment 2 (Tab. III),

being the highest mean BA over 80% with a std around 4%

again in LDA and SVM classifiers. The qualitative results of

the most optimistic combination (Fig. 6) show some minor

errors, which may be due to the same suboptimal processes

as in the unstained samples. However, significant mistakes

happen in NIH-3T3 sample, where a considerable amount of

spectra (26% specifically) are wrongly classified as A-375.

Therefore, adding the fluorescence dyes slightly reduces the

discrimination of the spectra but seems to introduce some

confounding artifacts, specially in NIH-3T3 and A-375 cells.

The classification performance significantly decreases in

Experiments 3 and 4 (Tabs. IV and V), where the BA barely

reaches 60% in the test sets for LDA and SVM and is only over

65% in one combination of Experiment 3. In Experiment 3
(Fig. 7), a poorer performance is again observed in the

discrimination of NIH-3T3 cells, where more than 30% of the

extracted spectra are wrongly classified as HaCaT and around

25% are classified as A-375. However, the situation is inverted

in Experiment 4 (Fig. 8), where the worst classifications are

performed in cells A-375 and HaCaT, whose spectra are

considerably misclassified as NIH-3T3. It is difficult to deduce

the main cause of these misclassifications because two effects

are involved in these experiments: the generalization capability

of spectra extracted from different images and the influence

of the dyes on the spectral classification. Nevertheless, as was

observed in Experiment 2, the presence of the stains seems to

have a negative impact on the discriminative properties of the

analysed skin cell spectra.

V. CONCLUSION

A multilevel framework for pixel-wise discrimination of

hyperspectral FTIR images from different types of skin cells

has been detailed. Different options of pre-processing and

classification algorithms have been proposed to estimate the

effectiveness of their possible combinations. Special care has

been taken in the selection of the optimal learning models and

their generalization assessment through cross-validation.

A dataset of FTIR images from four different types of

cultured skin cells (two normal and two tumor) have been

studied by means of the proposed framework. These cells

were divided into two batches and the cells of one batch

were stained with distinct fluorescence live cell dyes. The

presence of these stains can be used to create ground truth

images that inform of the position of the cells in possible

mixed celular cultures. However, before creating those mixture

experiments it was necessary to evaluate if the stains can affect

the discrimination of the skin cell spectra.

High discriminative capabilities of the unstained cell spectra

were demonstrated even independently of the pre-processing

method if relatively complex learning algorithms (LDA and

SVM) are used. Some minor mistakes were identified that may

be caused by a suboptimal previous separation of the substrate

and by scattering effects in the borders of the cells. On the

other hand, the classification experiments with the stained cell

spectra revealed a detrimental influence of the added dyes.

In the future, the main efforts will be focused on reducing

the observed scattering artifacts and trying to remove the

spectral fingerprint of the dyes. To that end, more complex pre-

processing methods will be studied, such as advanced versions

of Resonant Mie Scattering correction [13] with the incorpora-

tion of cell size information or Extended Multiplicative Signal

Correction [15] with reference spectra from measurements of

the pure dyes. Moreover, more cell samples will be cultured in

order to obtain more FTIR images. Thus, more sound results

and conclusions will be obtained about the general capabilities

of FTIR spectra to discriminate skin cancer cells.
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