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Abstract—Lens distortion self-calibration estimates the distor-
tion model using arbitrary images captured by a camera. The
estimated model is then used to rectify images taken with the
same camera. These methods generally use the fact that built
environments are line dominated and these lines correspond to
lines on the image when distortion is not present. The proposed
method starts by detecting groups of lines whose real world
correspondences are likely to be collinear. These line groups are
rectified, then a novel error function is calculated to estimate
the amount of remaining distortion. These steps are repeated
iteratively until suitable distortion parameters are found. A
feature selection method is used to eliminate the line groups that
are not collinear in the real world. The method is demonstrated
to successfully rectify real images of cluttered scenes in a fully
automatic manner.

Index Terms—Camera calibration; radial distortion; plumb-
line method; distortion rectification; self-calibration.

I. INTRODUCTION

Calibrating the camera under controlled conditions, e.g.,
using a calibration pattern, is called pre-calibration, and is
well studied [1], [2], [3]. Such methods generally estimate
the lens distortion along with the camera model and provide
accurate results. However, pre-calibration may not viable in
all situations. For example, Collins and Tsin argue that the
intrinsic parameters of the camera may be affected due to
handling or temperature and humidity conditions, thus the
camera should be calibrated on-site [4]. Furthermore, one may
not be able to use known calibration objects in the scene for
calibration, or the camera may be unavailable for capturing
special calibration images (a common case for images col-
lected from the Internet). Using a set of arbitrary images for
camera model estimation is called self-calibration [5].

Self-calibration generally uses multiple views to estimate
the camera model [5], [6], [7]. A further specification of the
application limitations is using a single image. A large set
of studies estimate the lens distortion with a single image,
using the projective invariant which states that lines in the real
world are projected to lines in the image plane [8], [9], [10],
[11], [12]. This approach is commonly known as the plumb-
line method [13]. A similar assumption is that projections
of parallel lines in real world intersect at a single vanishing
point on the image [14], [15]. Plumb-line methods require real
lines to be present on the scene and the vanishing point based
methods require some of these lines to be parallel and not
collinear. Due to their dependencies on the scene composition,
it is difficult to make a fair comparison among these methods.

Plumb line methods use edges [8], [9], [10], [16], [17], [18]
or lines [11], [14], [19] as lowest level features. The collection
of these features are either modelled as a line, considering they
would correspond to a line if the distortion was corrected [8],
[9], [11], [17], [18], or they are modelled as a circular arc,
considering a line distorted by a first degree lens distortion
function is a circular arc [10], [16], [19]. Ideally, these low
level features should belong to lines in the real world. Fully
automatic methods tend to use a robust feature selection
method such as RANSAC [11], [14], [16], [19] or LMedS [8].
Other methods either explicitly state that human intervention
is necessary for feature selection, or since they are using
a non-linear optimization algorithm for distortion parameter
estimation, having a majority of valid features allows for
convergence to an adequate solution.

Estimation of parameters can be done by a closed form
solution [8], [19], a linear solution [19], exhaustively [20],
but the least squares approach is the most common [9],
[10], [11], [15], [16], [18], [19], [21]. An error function to
be minimized needs to be defined for using a least squares
approach. Majority of the studies use the distances between
the features and fitted models as their error function. Strand
and Hayman argue that minimizing distances in the undistorted
image causes a bias towards downscaling distortion parameters
where all distances are reduced [19]. A zoom factor that scales
the undistorted image is used by Alvarez et al. that aims to
reduce this effect [17].

II. ESTIMATION OF DISTORTION PARAMETERS

In this study, we will use the polynomial distortion model
with two radial parameters, as done in [11], [12], [14], [15],
[17], [21]. Let us assume (x̃d, ỹd) are distorted screen coordi-
nates and (x̃u, ỹu) are rectified screen coordinates. These coor-
dinates can be normalized by subtracting the distortion center,
(cx, cy), thus yielding (xd, yd) and (xu, yu), respectively. The
distances of the normalized points from distortion centers give
the radii, rd and ru. According to this notation, the distortion
that maps rectified coordinates to distorted coordinates is
modelled as:

rd = ru(1 + κ1r
2
u + κ2r

4
u) (1)
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2
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(a) All line segments. (b) Remaining line segments
after elimination.

(c) Grouped line segments.

Fig. 1: Steps of the feature extraction step. Endpoints of line segments are indicated by circular markers. Some of the resulting
line groups are not collinear in real world. This issue is later addressed using a feature selection method.

The proposed method starts with line segment detection in
the distorted image. These line segments are eliminated based
on heuristics that will be detailed in Section II-A and the
remaining sufficiently collinear ones are clustered into line
groups. It is assumed that the environment is line dominant,
hence the majority of the line groups belong to real world
lines. The line groups that contradict this assumption will be
eliminated later on. The line groups are rectified using a set of
distortion parameters as described in Section II-B. The relative
orientations of rectified line groups are assessed using the error
function discussed in Section II-C. The distortion parameters
are adjusted iteratively, until the error function converges to
a minimum. Section II-D explains the method of eliminating
the line groups that do not belong to real world lines. Assume
there are N line groups and a minimum error function result is
obtained following the prior steps. The same steps are applied
for the N−1 combinations of the line groups. If all of the line
groups belong to real world lines and are correctly localized,
it is expected that N line groups yield the minimum error
function value. Then, there are no line groups to be eliminated
and the method is finished. If one of the N − 1 combinations
of the line groups have yielded the minimum error function
result, the line group which is absent in this combination is
eliminated, as it is inconsistent with the rest of the line groups.
This line group removal operation is repeated until removing
any more line groups does not improve the result.

A. Feature Extraction

The proposed method starts with line segment detection
(see Fig. 1.a) [22]. Short features are reported to deteriorate
performance in the literature [9], [11], [15], [16], [21], which
is consistent with our experience, hence they are eliminated.
Assuming the distortion center is close to the center of the
image, line segments directed towards the center of the image
are eliminated, because they will not contribute meaningful
information regarding radial distortion (see Fig. 1.b).

The line segment detection method starts by detecting edge
segments, then detecting line segments on these edge seg-
ments [22]. We can group the line segments that are extracted

from the same edge segment. This method gives more reliable
results, compared to distance and relative orientation based
heuristics similar to the ones used in [11]. The line segments
which are not grouped with at least one other line segment
are also eliminated. Majority of the resulting chains of line
segments are expected to belong to lines in real world (see
Fig. 1.c). The elimination of false line groups will be addressed
to in Section II-D.

B. Iterative Rectification

Rectifying the whole image is an expensive operation.
Instead of rectifying the image at every parameter estimation
iteration step, rectifying only the extracted features will be
preferable. By doing so, we will obtain the distortion model
that maps distorted points to rectified points. Note that the dis-
tortion model that is used for image rectification (see Eq. 1,2)
is the inverse of this mapping function. When rectifying an
image, our aim is to fill a set of blank pixels on the rectified
image plane. Therefore, the function that maps the rectified
points to distorted points must be found.

In the literature, the inverse distortion model is used
throughout the self-calibration method, then the forward model
is approximated using the inverse model as a final step [12],
[14], [17]. This approach introduces a considerable amount of
approximation error to the system. There is also an alternative
distortion rectification method that directly uses the inverse
parameters and gives better results [23]. However, this method
cannot provide forward model parameters, which may be
needed in some cases. As an alternative to these methods, we
search for forward model parameters through the iterations.
To rectify the line groups, we approximate the inverse distor-
tion model at each step using Newton-Raphson method. By
doing so, the approximation error caused by Newton-Raphson
method is spread among the distortion parameter estimation
iterations, hence the distortion parameters are chosen accord-
ingly to compensate for some of this error. Since the result of
the proposed method is forward distortion model parameters,
they can be used for distortion rectification without needing
to approximate their inverses.
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While applying rectification, the distortion center is fixed
to image center and the ratio of horizontal and vertical focal
lengths is assumed to be unity. These parameters can easily
be included to the proposed method as additional distortion
model parameters. However, these factors are already close to
the assumed values. Reaching to a better estimation requires a
large number of well localized features, which are not present
in our case with single images.

C. Error Function

An error function is used to measure the success of a
rectification. Hence, only rectifying the image with more
suitable distortion parameters must decrease the result of this
function. As mentioned in Section I, distances from the fitted
line or circle models are used to calculate the error function
in the literature. This is not preferable, as the total zooming
in or out effect of the applied rectification causes a bias in the
error function. A rectification that causes the image to become
smaller will also decrease all distances in the image. If the
error function is directly related to the magnitude of model
fitting error distances, it will have a positive bias towards
distortion parameters that cause downscaling rectifications.

As a result of the feature extraction and clustering scheme
discussed in Section II-A, we have multiple chains of line
segments detected on the distorted image. Using the method
described in Section II-B, these line segments are rectified. In
the ideal case, all line segments of a chain will lie on a single
line. This is commonly tested by fitting a line (or a circle) to
these line segments and accumulating the distances from this
model. In our method, we accumulate the relative orientations
(see Fig. 2) of line segments in every chain (see Eq. 3), where
θ is the relative orientation). This is more advantageous than
the distance based error function, as it is not prone to the
zoom-related bias discussed earlier. The mean square error is
calculated as shown in Eq. 4 to find the error of a line segment
chain.

θi = arccos

(
~li · ~li+1

‖~li‖‖ ~li+1‖

)
(3)

ε =
1

N

N∑
i=1

θ2i (4)

The function in Eq. 4 is only defined for a single line segment
chain. There are multiple chains in an image. We do not weigh
the effect of these chains based on the number of line segments
or their total lengths, as they do not appear to have a significant
meaning. Therefore, the total error function for an image is the
summation of error functions for each individual line segment
chain. An error function value for multiple images can be
calculated in a similar manner to work with a larger number
of features. In this study, we assumed that only one image is
available.

Fig. 2: θ, the relative orientation of two consecutive line
segments.

D. Feature Selection and Distortion Estimation

The error function presented in Section II-C is minimized
using a non-linear optimization scheme [24]. At this point, the
result will be acceptable if lines were dominant in the scene.
Eliminating line groups that come from non-collinear elements
will further improve the results. To eliminate the remaining
line groups, sequential backward selection is applied. At first,
all N line groups are used to estimate the distortion. Then, the
distortion is estimated again by using the N −1 combinations
of these line groups. The process stops if removal of any
line group does not yield a better result than not removing
any line group. Otherwise, the line group whose absence
yields the least error function result is eliminated. This process
is repeated until no further improvement can be done by
removing line groups. For our test images, this method needs
to repeat the non-linear optimization ∼ 30 times for each
frame. As expected, there is a tradeoff between robustness
and running time. Alternatively, RANSAC is commonly used
in the literature for robust selection of features [11], [14], [16],
[19]. While also assuming that line features coming from real
world lines are high in number, RANSAC may fail to come up
with a correct selection of features, regardless of its number
of maximum iterations. The proposed feature selection method
has the advantage of being deterministic and providing more
reliable results.

III. EXPERIMENTAL RESULTS

The experiments are done using 15 real images taken with
a camera with significant barrel distortion. The camera is cali-
brated with a checkerboard pattern using Bouguet’s calibration
toolbox [25] and the test images are rectified using these
results. The rectified images are considered to be the ground
truths, as pre-calibration methods tend to give fairly accurate
results. This step included estimating tangential distortion and
distortion center to obtain the best result possible.

We used Bukhari and Dailey’s automatic radial lens dis-
tortion rectification implementation for comparison [16]. This
method estimates a single distortion parameter and the dis-
tortion center. Since the pre-calibration method also estimates
the distortion center, the difference will cause a disadvantage
against our results. RANSAC causes Bukhari and Dailey’s
method to be non-deterministic. The algorithm sometimes
gives invalid results, such as largely empty images. We re-
peated the procedure until an acceptable result was achieved.
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Fig. 3: RMSE and PSNR results for [16] and the proposed
method. The rectified images are scaled and translated over a
reasonable range and the best results are used.

The images rectified with either of the methods are com-
pared with the ground truth images using RMSE and PSNR.
The images are scaled and translated to produce the best
result. Refer to Fig. 3 and Table I for quantitative results.
For a general qualitative analysis of the methods, see Fig. 4.
The borders of the images are especially useful in giving a
sense of the estimated distortion characteristics. The proposed
method estimates the distortion characteristics similarly for
different images, even though the scenes are different. Average
running time for the proposed method for a single 800× 600
resolution image is 22.2 seconds. For scenes where lines
are very dominant, the feature selection step described in
Section II-D can be omitted. Then, the average running time
for a single image would be 0.67 seconds.

TABLE I: Average RMSE and PSNR values for all images.

Bukhari and Dailey [16] Proposed Method

RMSE 45.06 31.53

PSNR (dB) 19.51 21.35

IV. CONCLUSION

The proposed method uses an error function that represents
the amount of distortion well. Furthermore, due to iterative
rectification of lines, the forwards distortion parameters are
estimated, rather than estimating inverse parameters and ap-
proximating as a last step. Sequential backwards selection is
applied to ensure robustness against line groups that emerge
from non-linear structures. Contrary to using RANSAC, this
results in a fully deterministic algorithm. The results show
that the method works successfully in cluttered environments,
if there are lines that represent the distortion characteristics.
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