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Abstract—Image inpainting is the process of filling missing or
fixing corrupted regions in a given image. The intensity values
of the pixels in missing area are expected to be associated with
the pixels in the surrounding area. Interpolation-based methods
that can solve the problem with a high accuracy may become
inefficient when the dimension of the data increases. We solve
this problem by representing images with lower dimensions
using High Dimensional Model Representation method. We then
perform Lagrange interpolation on the lower dimensional data to
find the intensity values of the missing pixels. In order to use High
Dimensional Model Representation method and to improve the
accuracy of Lagrange interpolation, we also propose a procedure
that decompose missing regions into smaller ones and perform
inpainting hierarchically starting from the smallest region. Exper-
imental results demonstrate that the proposed method produces
better results than the variational and exemplar-based inpainting
approaches in most of the test images.

I. INTRODUCTION

Image inpainting techniques are used in many problems

such as repairing damaged photos, removing an object from

a given image, completing missing regions [1], solving red

eye problem [2] and image deblurring [3]. Image inpainting is

a challenging problem since most of the images contain both

structural and textural regions that lead to complicated patterns

[4]. In the literature, there are image inpainting approaches

which only focus on inpainting textural regions [5]–[7] as

well as the ones that works only on structural regions [1],

[8], [9]. There are also hybrid approaches that decompose

a given image into structural and textural components, and

apply structural inpainting to structural component and texture

synthesis to textural component [4].

Texture synthesis algorithms are one of the oldest image

inpainting techniques. These methods inpaint missing regions

by exploiting the pixel intensity values of its neighbouring

regions. In these methods, texture is synthesized pixel by pixel.

They search similar pixels from neighbourhoods and inpaints

the missing region by sampling and copying the intensity

values of the most similar pixels [10]. Partial Differential

Equation (PDE) based inpainting methods was first proposed

by Bertalmio et al. [1]. Later, Chan and Shen proposed two

PDE-based methods: Curvature Driven Diffusion (CDD) [11]

and Total Variation (TV) [12]. These methods basically aim to

complete missing regions by maintaining the structure of the

surrounding area. Thus, these methods provide good results

in small regions. However, as the region to be inpainted

grows, the obtained results get blurry and worse. Exemplar-

based image inpainting techniques can be used efficiently in

larger missing regions. These algorithms differ from the tex-

ture synthesis based algorithms with their patch size. Similar

patches instead of pixels are used to sample and copy to

inpaint the missing regions [13]. In these methods, filling

order of the pixels in the missing region and pre-determined

sampling patch size plays an important role on accuracy of

these methods. Other related works on image inpainting can

be found in [14]–[20].

In this paper, we present a new interpolation-based image

inpainting approach which is based on High Dimensional

Model Representation (HDMR) and Lagrange interpolation.

We consider image inpainting as an interpolation problem

in which unknown pixel intensities are estimated by per-

forming interpolation through known pixel intensities in the

surrounding region. However, applying interpolation to a high

dimensional data set is not a trivial task, even for 3D data

as in color images, due to computational difficulties [21]. In

order to deal with high dimensional data, we use HDMR

[22] method and represent high dimensional data with lower

dimensions. Then, we perform Lagrange interpolation through

the outputs of HDMR for image inpainting. HDMR and

Lagrange interpolation have already been successfully applied

to high dimensional data in other applications in the literature

[21], [23]–[25]. However, in image inpainting, HDMR brings

some difficulties due to the orthogonality condition that comes

from the derivation of the HDMR equation [23]. In order

to satisfy the orthogonality condition for image inpainting

using HDMR, pixels in the corresponding row or column of

the missing region must also be considered as missing. We

deal with this problem with a hierarchical approach in which

we decompose missing regions into smaller regions and start

inpainting from the smallest one.

The major contribution of this paper is a new image

inpainting algorithm that is based on HDMR and Lagrange

interpolation. To the best of our knowledge, this is the first

image inpainting approach that is developed using HDMR and

any kind of interpolation technique in the literature. We per-

form experiments on variety of test images and missing regions

combinations. We also compare the accuracy of our approach
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with two pioneering approaches: total variation inpainting

[12] and exemplar-based inpainting [13]. Experimental results

demonstrate that our approach produces better results than

both approaches in most of the test images, especially in the

ones containing more structural region.

II. PROPOSED METHOD

In this section, we first give mathematical background of the

HDMR method. Then, we provide the formulation of Lagrange

interpolation with HDMR. Finally, we introduce our proposed

image inpainting method.

A. High Dimensional Model Representation

HDMR is a divide-and-conquer method which divides a

multivariate function into less-variate functions [22], [23]. For

a given multivariate f function, the HDMR expansion is given

as follows:

f(x1, . . . , xN ) =f0 +

N
∑

i1=1

fi1(xi1 ) +

N
∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2)

+ · · ·+ f12...N (x1, . . . , xN )
(1)

where f0, fi1(xi1), fi1i2(xi1 , xi2) and f12...N (x1, . . . , xN )
represent constant term, univariate terms, bivariate terms and

N -variate terms, respectively. These terms are determined

uniquely using the following vanishing conditions

∫ b1

a1

dx1 . . .

∫ bN

aN

dxNW (x1, . . . , xN )fi(xi) = 0, 1 ≤ i ≤ N

(2)

where

W (x1, . . . , xN ) =

N
∏

j=1

Wj(xj), xj ∈ [aj , bj], 1 ≤ j ≤ N

(3)

and aj and bj are the lower and the upper bounds of data points

in the jth dimension, respectively. Also, the weight function

of each dimension, Wj(xj), in Equation (3) should satisfy the

following normalization condition [23]

∫ bj

aj

dxjWj(xj) = 1, 1 ≤ j ≤ N. (4)

The vanishing condition given in Equation (2) corresponds

to the following orthogonality condition via an inner product

〈fi1i2...ik , fi1i2...il〉 = 0, 1 ≤ k 6= l ≤ N. (5)

The right-hand side components of Equation (1) must sat-

isfy these orthogonality conditions. Using the properties of

the weight function and the orthogonality condition, terms

in Equation (1) can be obtained. To achieve this, both

sides of Equation (1) are multiplied by the weight functions
(

multiplied by W1(x1)W2(x2) . . .WN (xN ) for constant term,

W1(x1)W2(x2) . . .Wi−1(xi−1)Wi+1(xi+1) . . .WN (xN ) for

univariate terms and so on
)

and are integrated over whole

Euclidean space defined by independent variables except xi.

In a real application, since f function is unknown, the

cartesian product of the independent variables x1, . . . , xN

defined in Euclidean space and the known function values

of the nodes in the cartesian product set are considered to

approximate f . The cartesian product set can be written as

follows:

D ≡ D1 ×D2 × · · · × DN (6)

where

Di ≡
{

ξ
(ki)
i

}ki=ni

ki=1
=
{

ξ
(1)
i , . . . , ξ

(ni)
i

}

(7)

and ξ
(ki)
i represents the ki

th value of ith independent variable.

In our approach, we choose the weight function as

Wj(xj) =

nj
∑

kj=1

α
(j)
kj

δ
(

xj − ξ
(kj)
j

)

, xj ∈ [aj , bj ], 1 ≤ j ≤ N

(8)

where δ(.) is the Dirac delta function and α
(j)
kj

is a constant

which specifies the contribution level of each node to the

model in which we set α
(j)
kj

= 1/N for all nodes, in our

experiments.

Finally, constant and univariate terms given in Equation (1)

can be written for cartesian set D as in Equation (9) and

Equation (10), respectively. Higher variate terms can also be

written in a similar manner.

f0 =

n1
∑

k1=1

n2
∑

k2=1

· · ·

nN
∑

kN=1

(

N
∏

i=1

α
(i)
ki

)

f
(

ξ
(k1)
1 , . . . , ξ

(kN )
N

)

(9)

fm

(

ξ(km)
m

)

=

n1
∑

k1=1

n2
∑

k2=1

· · ·

nm−1
∑

km−1=1

nm+1
∑

km+1=1

· · ·

nN
∑

kN=1

(

N
∏

i=1

α
(i)
ki

)

× f
(

ξ
(k1)
1 , . . . , ξ

(km−1)
m−1 , ξ(km)

m , ξ
(km+1)
m+1 , . . . , ξ

(kN )
N

)

− f0,

ξ(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N

(10)

B. Lagrange Interpolation using HDMR

An exact f function passing through all the data points can

be found by using all right-hand side terms in Equation (1).

It has been shown in the literature that using the bivariate

terms as the highest variate terms is sufficient for representing

most of the multivariate functions [23]. The formula of the

polynomial that is obtained by finding the terms in Equation

(1) is given as follows:

f(x1, . . . , xN ) ≈ f0 +

N
∑

m=1

Pm(xm)+

N
∑

m1,m2=1
m1<m2

Pm1m2
(xm1

, xm2
)

(11)

where

Pm(xm) =

nm
∑

km=1

Lkm
(xm)fm

(

ξ(km)
m

)

,

ξ(km)
m ∈ Dm, 1 ≤ m ≤ N.

(12)
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Note that Pm1m2
(xm1

, xm2
) can be computed similarly and

Lkm
(xm) is the Lagrange polynomial which is given in

Equation (13).

Lkm
(xm) =

nm
∏

i=1
i6=km

(

xm − ξ
(i)
m

)

(

ξ
(km)
m − ξ

(i)
m

) , ξ(km)
m ∈ Dm,

1 ≤ km ≤ nm, 1 ≤ m ≤ N

(13)

C. Image Inpainting using HDMR and Lagrange Interpolation

In this section, we introduce our image inpainting algorithm

based on HDMR and Lagrange interpolation.

For a given X×Y×Z image f , let f(x, y, z) be the intensity

value at x, y, z coordinates. Here, X , Y and Z represents

the number of rows, columns and color channels (Z = 2
for grayscale, Z = 3 for color images), respectively. Then,

the sets that are used to create the cartesian product given in

Equation (6) can be written as follows:

D1 = {1, 2, . . . , X},D2 = {1, 2, . . . , Y },D3 = {1, 2, . . . , Z}.
(14)

It has been shown in the literature that a given grayscale image

can be exactly obtained with HDMR by using at most bivariate

terms in the Equation (1) [26]. Therefore, in our approach for

color image inpainting, we use constant, univariate, bivariate

and trivariate terms in Equation (1).

As we mentioned in the previous section, orthogonality

condition must be satisfied to apply HDMR to a data set

[23]. Orthogonality condition requires that all the values of

f to be known for all points in D. In image inpainting, since

there are some pixel coordinates in D whose intensity values

are unknown, the orthogonality condition is not satisfied.

Therefore, we remove row indices corresponding to missing

region (or column indices corresponding to missing region)

from D1 (or D2) and construct new cartesian set D using new

D1, D2 and D3 sets. Let us assume that the intensity values in

the black region shown in Figure 1a are missing. Coordinates

of the leftmost and the rightmost pixels in the missing region

are (α1, β1) and (α2, β2), respectively. ‘X’ indicates these

pixels in Figure 1a. Let us also assume that we remove

column indices corresponding to missing region from D2.

Then, the sets that construct the cartesian product D become

D1 = {1, 2, . . . , X}, D2 = {1, 2, . . . , β1 − 1, β2 + 1, . . . , Y }
and D3 = {1, 2, . . . , Z} and Lagrange interpolation followed

by HDMR can be applied using new cartesian set D for

inpainting.

When applying HDMR, the image inpainting problem in

Figure 1a turns into inpainting the image shown in Figure 1b.

Note the significant increase of the missing region with the

changes that we made to satisfy the orthogonality condition.

There is a trade-off between satisfying the orthogonality con-

dition and accuracy of the inpainting because of the increasing

size of the region to be inpainted. We use an hierarchical

image inpainting procedure to solve this trade-off. In each

iteration of this procedure, we search the image both vertically

and horizontally to find the smallest missing region whose

immediate neighbours are known in the search direction. A

patch is created containing only the found missing region

and its immediate known neighbouring pixels. Then, D is

constructed with respect to indices of the patch. Once the

HDMR and Lagrange interpolation is applied to find the

missing pixel values in this patch, the found pixel values are

put to their original location in the image.

(a) (b)

Fig. 1. (a) Original missing region, (b) missing region after orthogonality
condition is satisfied.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results of our image

inpainting approach. We perform experiments on 3 different

test images shown in Figure 2. We design 15 different test

settings by using each test image with 5 different masks shown

in Figure 3. Note that black regions in each mask represent the

missing region in the corresponding test setting. We compare

our approach with two pioneering inpainting approaches in the

literature: total variation inpainting [12] and exemplar-based

inpainting [13].

(a) House (b) Lena (c) Barbara

Fig. 2. Test images.

(a) Scratch (b) Spiral-1 (c) Watermark (d) Spiral-2 (e) Text

Fig. 3. Masks representing missing regions.

We obtain quantitative results by comparing inpainting

results of each method with the original images using peak

signal-to-noise ratio (PSNR) which is computed as follows:

PSNR = 20. log(MAXI)− 10. log(MSE) (15)
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where

MSE =
1

XY Z

X
∑

i=1

Y
∑

j=1

Z
∑

k=1

(I(i, j, k)− Î(i, j, k))2. (16)

MAXI is the maximum possible pixel value of the image,

I and Î are original and inpainted images, respectively. Note

that higher values in PSNR mean better results.

PSNR results for the test image given in Figure 2a are shown

in Table I. Results demonstrate that the proposed inpainting

approach produces better results than both state-of-the-art

methods in 4 test cases. The exemplar-based method in [13]

produces the best result with the mask shown in Figure 3a in

terms of PSNR. In this test case, the result of our approach is

very close to the best result and better than the result of the

method in [12].

Mask Method in [12] Method in [13] Proposed Method

Scratch 37.9607 38.2588 38.0464

Spiral-1 33.0644 35.4030 35.9883

Watermark 31.2465 30.0557 32.4042

Spiral-2 33.3071 32.0079 34.2790

Text 27.1687 24.2372 29.7899
TABLE I

PSNR RESULTS OF THE TEST IMAGE IN FIGURE 2A WITH 5 DIFFERENT

MASKS.

Table II contains the PSNR values for the test image given

in Figure 2b with 5 different masks. In this experiment, our

approach produces the highest PSNR values in all test cases.

Mask Method in [12] Method in [13] Proposed Method

Scratch 35.9661 33.6417 36.4427

Spiral-1 35.5414 33.3323 37.1111

Watermark 30.1658 28.9228 31.3753

Spiral-2 31.2359 28.7694 31.4559

Text 27.8587 24.3407 28.6769
TABLE II

PSNR RESULTS OF THE TEST IMAGE IN FIGURE 2B WITH 5 DIFFERENT

MASKS.

We present PSNR results for test image in Figure 2c with 5

different masks in Table III. In this test setting, the approach in

[13] produces the best results in 3 masks whereas our approach

achieves the best PSNR values on the remaining 2 test cases.

Mask Method in [12] Method in [13] Proposed Method

Scratch 32.6628 33.1591 32.6184

Spiral-1 29.5369 31.8904 31.1452

Watermark 28.3516 27.4568 28.3986

Spiral-2 26.1509 28.7713 27.4096

Text 23.9638 22.3270 24.5221
TABLE III

PSNR RESULTS OF THE TEST IMAGE IN FIGURE 2C WITH 5 DIFFERENT

MASKS.

Test images given in Figures 2a and 2b contains more

structural patterns relative to the textural ones. Therefore, our

interpolation-based inpainting approach produces better results

than the other two approaches in the literature in most of

the test cases. The test image in Figure 2c contains many

textural regions like the scarf of the lady and the chair in

the background. Since, the examplar-based approach in [13]

performs image inpainting by copying similar patterns, it is

capable of inpainting textural images. Although, the proposed

approach does not have the mechanism for inpainting textural

images, PSNR values are very close to results of the method

in [13].

Finally, we present some visual results in Figure 4. These

results also demonstrate that the proposed approach achieves

better inpainting performance than the other methods in most

of the test cases.

Masked Method Method Proposed

Image in [12] in [13] Method

Fig. 4. Some visual inpainting results.

IV. CONCLUSION

In this work, we propose a new inpainting algorithm which

uses HDMR method and Lagrange interpolation. The results

of the proposed method are compared with the results of

TV-based [12] and exemplar-based [13] inpainting methods

which are two pioneering methods in literature. The results

demonstrate that our approach produces better results than

both inpainting methods in most of the test cases, especially

in the ones containing more structural regions.

The proposed method assumes that all columns or rows that

include the pixels in the missing region are also missing due

to the orthogonality constraint of HDMR. One possible future
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research direction is to use indexing HDMR method which

does not require orthogonality condition [27]. We are also

planning to combine our approach with a texture synthesis

method to achieve better accuracy in textural images. Finally,

using HDMR method with different interpolation or regression

methods worth investigating.
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