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Abstract—On Mars there is no global positioning system avail-
able. In this paper we present an analysis of a relative localization
system that acts as a moving swarm to estimate the location of
its base. Our algorithm jointly processes two objectives. First to
shape an optimized swarm structure to estimate the location of
the base reliable and second to move the swarm together towards
the base to return home. The estimate of the base location is used
to return to it by controlled movements considering constraints
such as the minimum distance between the swarm elements to
avoid collisions. The performance comparison of our location
information driven algorithm with goal approaching or flocking
algorithm shows a robust behavior with a much higher efficiency.

I. INTRODUCTION

In the past missions to Mars only single rover is used
to explore the area and to perform different experiments.
However, a single rover jeopardizes the whole mission with the
risk of a single point of failure. A swarm brings in additional
benefits such as simultaneous and fast exploration of larger
areas through cooperation between the rovers. On Mars no
global positioning system exists, such as the Global Navigation
Satellite System on Earth. To navigate on Mars, a rover often
relies on visual and inertial navigation systems, which strongly
depends on environment, or external navigation infrastructure,
including multiple anchors, e.g. mission base or fly-by orbiters,
which is limited by its temporal/spatial availability.
In this paper we highlight the navigation capability of a

swarm by exploiting relative position. The swarm expands its
own reference system and collaboratively achieves navigation
objectives, such as return-to-base, without any absolute posi-
tion information. The rovers of the swarm, also known as the
agents (AGs), estimate the distance to each other and to the
mission base with received radio communication and naviga-
tion signal. Then the formation of swarm and the position of
base relative to the swarm are jointly estimated, similarly to
the simultaneous network localization and target tracking, for
example, in [1]. The information quality is closely linked to
the ranging model that is based on the radio signal [2]. The
performance of the range estimate is distance dependent and
even limited by a hear-ability distance. The base broadcasts
its beacon signal much stronger to the swarm than the intra-
swarm communications to cover a larger exploration area.
Fundamentals of cooperative localization was introduced in [3]
and extended in [4]. In [5] swarm self-localization with limited

radio resource was discussed. Beacon direction estimation with
uncertain swarm formation information is investigated in [6].
Moreover, the swarm can be controlled to form certain

formations in order to enhance its capability. Flocking al-
gorithm is proposed by Olfati-Saber in [7], where a regular
triangular lattice formation is formed, which is preferable for
collaborative observation and message exchange. In [8] the
authors have the explicit aim to control agents to improve or
maintain the localization quality through information-seeking.
In [9] an alternating goal approaching and location information
seeking formation control is proposed with the help from
multiple anchors. We propose a location information-driven
formation control, where the swarm intends to build an optimal
formation for better estimating the relative position of the
mission base in order to move to base efficiently. The swarm
movement is constrained by a limited overall velocity and a
minimum distance between the agents for collision avoidance.
We exploit the position Cramér-Rao bound (CRB) to design
such a multi-objective controller. As the consequence, the
swarm spreads out to improve the geometrical constellation
and keep connected within the hear-ability range. Meantime,
the swarm moves towards the base with a certain minimal
velocity. We show that the sensibility of the algorithm relies
on the accurate relative position of the swarm and that there
are substantial improvements compared to the well-known
flocking algorithm.
The paper is structured as follows: In Section II we for-

mulate the system model and the return-to-base problem. In
Section III we describe how the rovers of the swarm control
their move towards the base together with a collision avoidance
distance. In Section IV we compare the presented algorithm
against the goal approaching and flocking algorithm. Finally,
we conclude with Section V.

II. SYSTEM AND PROBLEM FORMULATION
A. System Formulation for Swarm Return-to-Base
We consider a return-to-base application with M+1 nodes,

includingM mobile AGs and a single stationary mission base.
AGs form a swarm, trying to return to the base. Neither the
swarm location nor the base location is known to the swarm.
The swarm needs to seek for sufficient location information
by exploiting inter-node radio signal in order to approach the
base. We define the set of all nodes as K, and the set of
agents as M. For a generic AG u, the state space at time step
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k corresponds to the two-dimensional position, i.e., p(k)
u =

[x
(k)
u , y

(k)
u ]T. The mission base is fixed to a position p

(k)
b =

[xb, yb]
T. The positions of agents are controlled as follows:

agent u moves step-wise with a control command u(k)
u and a

transition noise ε(k)u :

p(k)
u = p(k−1)

u + u(k)
u + ε

(k)
u , u ∈ M. (1)

The state p(k) of all AGs is obtained by stacking the states of
the individual agents into a vector, and can be expressed as

p
(k)
M

= p
(k−1)
M

+ u
(k)
M

+ ε
(k)
M

. (2)

where ε
(k)
M

is the global transition noise. The global state
vector of all nodes is denoted as: p(k) = [(p

(k)
M

)T , (p
(k)
b )T ]T .

For simplicity, we will omit the superscript (k) excluding cases
of ambiguity.

B. Swarm Localization
In order to return to the base, swarm localization is needed.

Agent transmits radio signal for intra-swarm communication
and localization. We assume the AGs equipped with stable
clocks, which makes the location information observable from
the received radio signal waveform. This signal is exploited
for propagation time-based inter-agent distance estimate .
Meantime, the base emits radio signal as beacon, in order to
guide the swarm to return. The distance du,v = ‖pu − pv‖
between two generic nodes u and v is estimated as zu,v.
The estimate noise is distance dependent with a variance
σ2
u,v(du,v). The distances of all node pairs and their estimates
are denoted by vectors d and z ∈ RL respectively, where L
is the number of measurement links. We model the swarm
system as a fully connected network with independent links,
i.e. L = M(M +1)/2. Similarly as in [9], links with distance
larger than the node hear-ability are modeled with a large a-
priori ranging variance. For conventional localization systems,
sufficient number of anchors with known position, e.g. navi-
gation satellites or base stations, form an absolute reference
system. The task is to locate agents in this reference system.
In contrast, in our system only the inter-node measurement
is available, thus nodes can only be located with respect to
a swarm-level reference system. Swarm localization aims to
simultaneously estimate the swarm formation, generating a
swarm-level reference from the formation and locating the
base relative to the swarm. This relative location information
is sufficient to generate control commands, which determine
moving directions of AGs relative to the swarm reference.
Choosing an appropriate swarm reference is important in
swarm localization, as discussed in [10]. Three arbitrary
entities in pM can define a swarm reference, since three is the
minimal sufficient number of constraints to prevent the global
rigid motion of the swarm estimate. Without loss of generality,
we choose the first three entities, i.e. r = [x1, y1, x2]

T , to span
the reference system. The interpretation of the choice is that
the two reference AGs form a baseline. The remaining global
state vector, defined as s = [sT

M
,pT

b ]
T , are to be estimated with

respect to this baseline. The vector sM is a sub-vector from

Figure 1. A swarm navigation system with three AGs and a single base

pM, excluding r. The global state vector can be simplified as
p = [rT , sT ]T . Relative localization is a well addressed topic,
e.g. in [10] and [5]. In order to focus on formation controller
design, in this paper we model the position estimate relative
to the baseline from a generic estimator by the CRB described
in III-C.

III. SWARM FORMATION CONTROL
A. Navigation Objectives and Constraints
A swarm navigation application is normally a multi-

objective optimization problem. The global control command
for swarm uM is generated based on the objectives of the ap-
plication and the position estimates at previous step to decide
where to go next. For the swarm return-to-base application,
the objectives include:

Problem P1 - location information seeking:
minimize
uM∈UM

‖ŝ− s‖; (3)

Problem P2 - collision avoidance:
du,v > dmin > 0, ∀u �= v ∈ K; (4)

Problem P3 - return-to-base:
uT
M · eb,M > κ > 0, (5)

where eb,M =
1M×1 ⊗ pb − pM

‖1M×1 ⊗ pb − pM‖
. (6)

The symbol ⊗ denotes the Kronecker product, which stacks
the base position into a vector with the same size as pM. The
set UM is the applicable controller set. The problem P1 aims to
seek location information jointly for swarm and base. It can be
solved with a location information driven formation control.
The problem P2 and P3 are considered as the primary and
secondary constraints respectively to the optimization solution.
The constraint P2 guarantees that any two nodes are distanced
to avoid potential collisions. Whereas P3 guaranties the swarm
arrive at the base after certain number of time steps, controlled
by κ. A swarm system is illustrated in Fig. 1, where three AGs
move from time step k − 1 to time step k towards a base.

B. Flocking
Flocking is a heuristical algorithm proposed in [7] us-

ing collective virtual potentials to form a regular formation.
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An agent is affected by attractive/replusive force to keep a
fixed distance with neighboring agents in the hear-ability.
The swarm objective direction is modeled as a virtual agent
with only attractive force to lead the flock towards a goal.
With these simple rules, complex swarm collective behavior
can emerge, e.g. rendezvous, split, rejoin, squeezing, etc.
depending on the environment. In free space, the swarm will
be stabilized to a regular triangular lattice formation. With
this formation, the swarm seamlessly covers the whole area
and has bounded stretch, which is preferable primarily for
collaborative observation and message exchange. We found
that this formation is also beneficial for the return-to-base
application. The controllable bounded stretch of the formation
offers a large aperture for observing the direction of the
base without losing precision for formation estimate, which
partially solves the problem P1. The fixed desired inter-node
distance inherently guaranties collision avoidance in P2. Last
but not least, the flocking algorithm can be easily adapted
to the return-to-base objective, i.e. P3, by setting the virtual
agent moving towards the base. However, in flocking, local
geometric information is assumed to be precisely known, and
also the inter-node distance is pre-defined, which makes the
algorithm less adaptive to an application with little location
knowledge. In this work, we use a modified flocking algorithm
as a benchmark for comparison.

C. Location Information Driven Formation Optimization

To find a controller dedicated to the problem P1, we exploit
the theory of Fisher information and the CRB. The CRB is a
lower bound on the estimation error variance of any unbiased
estimator, and is expressed as

E
[
‖ŝ− s‖2

]
≥ CRB[s] = tr

(
F−1

s

)
, (7)

where Fs = HsFdH
T
s is the Fisher information matrix (FIM)

of s. The geometry matrix Hs = ∇sd
T ∈ RL×(2M−1)

expresses the effect from the geometry relation among the
nodes. The diagonal ranging FIM Fd shows the impact from
the distance estimate accuracy. Under a conservative Gaussian
ranging assumption as in [9], the l-th diagonal entry in Fd,
which corresponds to link (u, v), can be derived as in [11,
eq. (3.31)]

λ−2
u,v � (Fd)l,l = σ−2

u,v +
1

2

(
∂σ2

u,v

∂du,v

)2

/σ4
u,v. (8)

We can reformulate the location information problem P1 as

minimize
uM∈UM

tr
(
F−1

s

)
. (9)

We will now proceed to solve the modified problem in (9),
which is a highly non-convex problem. We propose a gradient
approach to find the locally optimal solution similar to the
scheme in [12] and [9]. The major difference to the previously
mentioned works is that the swarm formation is optimized to
jointly minimizing the formation estimate error and the base

location error relative to the swarm-level reference system.
The gradient cM ∈ R

2M of the objective function is

cM =
[
cT1 , . . . , c

T
u , . . . , c

T
M

]T
= ∇pM

tr
(
F−1

s

)
. (10)

We further define Xs = F−1
s F−1

s ,

X =

(
03×(2M−1) 03×3

Xs 0(2M−1)×3

)
, (11)

Xu,v ∈ R2×2 as the sub-matrix X2u−1:2u,2v−1:2v and Yu,v =
Xu,u +Xv,v −Xu,v −Xv,u. The gradient component of AG
u, cu ∈ R2, is expressed as

cu =−
∑

v �=u∈K

2

(
I− eu,ve

T
u,v

)
Yu,veu,v

λ2
u,vdu,v

+
∂λ−2

u,v

∂du,v
eu,ve

T
u,vYu,veu,v. (12)

The vector eu,v = (pu−pv)/di,v is directional vector pointing
from node v to AG u.
The steepest descent gradient controller solving P1 with a

step size μM can be expressed as

uM = −μM

cM

‖cM‖
. (13)

The gradient cu from (12) is evaluated in the position
estimates p̂.

D. Formation Optimization under Constraints
In order to find a solution for formation optimization

fulfilling P2 and P3, a projection gradient method is applied.
When a constraint is activated, the control command generated
according to location information seeking uM is projected on
to the tangent subspace of that constraint. For the collision
avoidance, i.e. P2, the constraints in (4) can be re-described
as:

gu,v � ‖du,v‖ − dmin > 0, ∀u �= v ∈ K. (14)

We define a constraint violation set C2 with a size of ‖C2‖ =
V and stack all the violation distances into a vector dc2. We
stack all the gu,v(p) ∈ C2 into a vector gc2 = dc2−1V ×1 ·dmin
and its partial derivative with respect to pM into a matrix
Nc2. The projection matrix to the tangent subspace of these
constraints can be expressed as

Pc2 = I−Nc2
(
NT
c2Nc2

)−1
NT
c2. (15)

The control command after projection is

uM2 = Pc2 · uM −Nc2
(
NT
c2Nc2

)−1
gc2. (16)

Interestingly, Nc2 is the geometry matrix of the distance of
the violation links and the controllable state pM, i.e.

Nc2 = Hc2 = ∇pM
dT
c2. (17)

Similarly, the return-to-base objective P3 can be also written
as a constraint:

gc3 = uT
M · eb,M − κ > 0 (18)

uM3 =
(
I− eb,M · eTb,M

)
uM − eb,M · gc3. (19)

The projection becomes active when the constraint is violated.
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IV. NUMERICAL RESULTS
In the following we present numerical results of four differ-

ent algorithms. These are the (1) goal approaching algorithm,
where formation and base position is estimated, and swarm
moves towards the estimated base position only trying to keep
safety distance; (2), (3) the flocking algorithm described in
III-B with desired distance of 10 m and 20 m; and (4) the
location information driven algorithm proposed in III-C.

A. Setup and Evaluation Metrics
Ranging Model: We conducted numerical simulations to

assess the performance of the proposed formation controller.
The distance estimate is acquired from a radio-based OFDM
modulated ranging signal that is attenuated by a free-space
pathloss model with additive white Gaussian noise at the
receiver. The ranging model is similar to the one used in
[9], where ranging variance is quadratically proportional to the
distance until a low signal-to-noise ratio is reached, then the
ranging variance rapidly rises to the a-priori level due to the
misdetection. The diverging distance for a intra-swarm link is
set to around 20 m, considering the low energy consumption
requirement for a Mars rover. The mission base is assumed
to transmit with much larger power and the ranging variance
is always quadratically proportional to the distance in the
operational area.
Simulation Scenario: A swarm of 24 rovers intends to return

to a base 10 km away with an unknown position. The total
speed of the swarm is set to 1 m per time step for all the
four algorithms. For the location information driven control, a
maximum 5-percent of the speed is allocated for the formation
optimization, i.e. μM = 0.05m/step. The minimum safety
distance between nodes is set to two meters. A snapshot of
the four algorithms after 25000 time steps shows in Fig. 2- 5.
Performance Metrics: Besides for the snapshot, we consider

the remaining distance versus time steps in Fig. 6, joint error
of the formation and the base position estimate error in Fig. 7,
angular error of base direction estimate in Fig. 8 and minimum
inter-node distance in Fig. 9 as the metrics to evaluate the
algorithms performance.

B. Discussion
From the snapshot and the result curves, we can observe that

the goal approaching algorithm keeps all nodes close by and
therefore, the geometry is not beneficial enough to determine
the base. Both the error in joint position and angle-to-base is
very significant and explains also why the swarm progresses
towards the base only slowly. The minimum iter-node distance
is mainly above the minimum safety distance.
The flocking algorithms ensure that the AGs build a regular

structure in all dimensions. The angular error is low compared
to the goal approaching algorithm, see in Fig. 8. Between two
different desired distance, the flock with 10 m is not spread
enough to acquire a precise direction estimate, whereas the
flock with 20 m spread over a larger aperture to observe the
base direction, also in Fig. 8. However, it suffers from the loss
of formation estimation precision. Therefore, the difference
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Figure 2. Flocking with a desired distance of 10 m after 25000 time steps
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Figure 3. Flocking with a desired distance of 20 m after 25000 time steps

in joint position error between two flocking is insignificant.
Additionally, the loss of formation estimation precision for
flocking with 20 m leads to a less effective controlling
command. Hence, a major portion of the total speed is spent
on stabilizing and maintaining the flocking formation, which
distracts the attempt of return-to-base in flocking with a 20
m desired distance, see in Fig. 6. The minimum inter-node
distance mostly follows the desired distance, which on one
hand, avoids collision, but on the other hand, is not adaptive
to the scenario changes.
For our location information optimized swarm formation

in Fig. 5 the swarm automatically spreads out evenly along
the vertical direction towards the base, which significantly
increases the effective aperture for observing the homing
direction. Meantime, The AGs are not going too far , avoiding
loss of connectivity from the swarm. From the snapshot, we
can intuitively see that our proposed algorithm outperforms
the others in the sense of smaller remaining distance and
smaller angular error for the base direction. It is also proved
in Fig. 6 and Fig. 8. From Fig. 7 we can see that our approach
outperforms the others in the joint positioning error. The
minimum inter-node distance is continuously changing, which
indicates that the algorithm is online optimizing the formation
in order to adapt different scenarios. The safety distance is
also guarantied.
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Figure 4. Goal approaching algorithm after 25000 time steps
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Figure 5. Location information driven algorithm after 25000 time steps

V. CONCLUSION

In this paper we presented an algorithm that guides a swarm
of rovers going home to a base based on a beacon signal from
a single base. The proposed algorithm jointly considers an
optimized formation of the rovers to estimate their position
as well as the position of the base relative to the baseline.
The performance analysis shows that our location information
driven algorithm outperforms the classical flocking and goal
approaching algorithm in accuracy of the individual rovers as
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Figure 6. Remaining distance versus time steps
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Figure 7. Joint location error of the swarm rovers and the base
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Figure 8. Angular error of base direction

well as the total amount of time.
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