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Abstract—We explore, experimentally, feature selection and
optimization of stochastic model parameters for the problem
of speaker spotting. Based on an initially identified segment of
speech of a speaker, an iterative model refinement method is
developed along with a latent variable mixture model so that
segments of the same speaker are identified in a long speech
record. It is found that a GMM with moderate number of
mixtures is better suited for the task than a large number
mixture model as used in speaker identification. Similarly, a PCA
based low-dimensional projection of MFCC based feature vector
provides better performance. We show that about 6 seconds of
initially identified speaker data is sufficient to achieve > 90%
performance of speaker segment identification.

Index Terms—Speaker spotting, Speaker verification, Speaker
diarization, Gaussian mixture model (GMM), Mel-Frequency
Cepstral Coefficients (MFCCs).

I. INTRODUCTION

We consider the “speaker spotting” problem, in which the
goal is to track a given speaker S, i.e., “when did S speak?”,
in a recorded speech. We consider the specific situation, where
the target speaker S is identified manually by a segment
in the speech recording by the user, and all other segments
of the same speaker have to be identified. This is a semi-
supervised approach, because the target speaker model has to
be constructed and then used for further spotting. This problem
is of interest in indexing speech files or retrieving the portions
of speech spoken by a speaker in a conversation. Since the
approach requires the user to select a segment for training,
the goal is to minimize the effort of the user, which translates
to use of limited duration training of target model.

A supervised counterpart to the problem considered is the
speaker verification problem [1], [2], such as in forensic
applications. In verification, speaker model is estimated from
training examples, and the goal is to verify the speaker for each
segment in the conversation, and retrieve the speaker segments.
In this case, we need to worry about mismatch between the
channel and other ambient noise conditions between training
and test data. However, in the semi-supervised approach
considered here, since the training segment is a part of the
same conversation that is to be indexed, the effect of channel
and ambient noise mismatch does not arise.

Speaker diarization [3], [4], [5] can be considered as the
unsupervised counterpart to the semi-supervised speaker spot-
ting problem. In speaker diarization, the goal is to detect
the number of speakers in the conversation, and index the

recording according to speaker identities. This is typically
achieved by first detecting the speaker change points to
identify homogeneous speaker segments, which is followed by
clustering of segments corresponding to individual speakers.
Model based approaches [6] to speaker diarization estimate
the speaker models based on segments obtained after change
point detection, and then index the conversation using the es-
timated speaker models. This problem is different from semi-
supervised speaker spotting, because the training segment is
identified by the change point detection scheme instead of a
user; also multiple target speakers are of interest.

In this paper, we explore semi-supervised speaker spotting
in conversations lasting a few minutes. We consider the GMM-
UBM (Universal Background Model) approach, in which,
the background model is estimated using the entire speech
recording, while the speaker model is obtained by adaptation
of the background model to the target speaker segment. We
propose use of latent variable formulation [7], [8], which
allows for the estimation of speaker presence probability. This
is a soft-decision approach compared to the hard-decision of
a likelihood ratio test [9]. Since the goal is to minimize the
amount of training data required, it is necessary to optimize
with respect to the variables such as number of mixtures in
the model, and dimensionality of the feature vectors. Increase
in these variables increases the parameters in the model and
hence the amount of training data required. We show that
the accuracy of speaker spotting is poor with more number
of mixtures. Further, the accuracy decreases with increase in
feature dimensions when going from the traditional MFCCs
[10] to MFCC+∆ features. We show that reduction of the di-
mensionality of MFCC+∆∆∆ features using PCA (principal
component analysis) [11] helps in improving the performance
of speaker spotting.

II. SPEAKER SPOTTING

Fig. 1, gives an overview of the proposed approach to semi-
supervised speaker spotting problem. Given a speech recording
and segmental data identified as the target speaker; first we
estimate a stochastic model using the feature vectors estimated
from the entire speech recording. This model is then adapted to
the target speaker segment using maximum a-posteriori (MAP)
formulation. The estimated models are then used for spotting
the target speaker using a latent variable approach. This
formulation provides posterior probability of the target speaker
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Fig. 1. Overview of the proposed approach to speaker spotting.

for each segment; which is then used to select high confidence
frames (of posterior probability > 0.9). The selected segments
are then grouped with the initial training segment to improve
upon the speaker model. The updated speaker model is then
used for speaker spotting in an iterative manner. The individual
blocks of the proposed approach are discussed below.

A. Speaker spotting using latent variable model

Consider the model for the generation of a speech con-
versation as shown in Fig. 2. The feature vector Xn at
frame index n is modeled as coming from one of the two
states (indexed by zn): (i) target speaker, or (ii) non-target
speaker (referred to as background), and silence. Assuming
a normal quality recording of > 30 dB (signal to ambient
noise ratio), we can easily suppress the silence frames from
any modeling consideration by thresholding short-time energy
of the signal. Hence, silence is not taken as a separate state in
the conversation model. The probability density function (pdf)
of the observation is modeled as a mixture of the observation
densities for the two states of conversation, using the latent
variable approach as

P(X|{θs,θu, π}) = πsP(X|θs) + πuP(X|θu), (1)
and πs + πu = 1,

where P(X|θs) is the pdf (parameterized by θs) of the
target speaker, and P(X|θu) is the pdf of the background.
The variables πs, and πu denote the mixture weights of the
constituent densities as latent variables. We formulate the
speaker activity detection as that of estimating πs, and πu
given a set of observation vectors and the pdfs of the target
speaker and background. The estimates for πs, and πu can

π

{πs, πu}
zn

θ = {θs,θu}Xn

N

Fig. 2. A generative model for speech conversation.

be interpreted as the a-posteriori probabilities of the target or
non-target speaker presence.

Let X = {X1,X2, . . . ,XN} be a segment of N consec-
utive feature vectors. Given P(X|θs), P(X|θu), and X , we
consider the following optimization problem,

maximize
πs,πu

P(X ) ≡
N∏
n=1

[πsP(Xn|θs) + πuP(Xn|θu)] , (2)

subject to πs + πu = 1.

Here, we assume that the feature vectors are independent and
identically distributed. For the case of N = 1, solving the
above optimization problem leads to the solution,

πs =

{
1, if P(Xn|θs) > P(Xn|θu)

0, otherwise,
(3)

which is the same as the criterion for likelihood ratio test,
assuming equal priors for the two states of the recording.
For N > 1, the solution needs to be estimated using an
iterative scheme such as the Expectation-Maximization (EM)
algorithm [12], shown in Algorithm 1. The solution for πs,
can be interpreted as the probability of the target speaker state
given the observations. This is a useful measure for segments
containing overlapped speakers which is a common case in
real recordings [4], since it gives the probability with which
the observations are explained by the target speaker model
[8]. πs also gives the expected number of frames for which
the likelihood under target speaker state is higher than the
likelihood under the background state. The value of πs can
be thresholded to make a decision on the presence of target
speaker. Note that, the solution obtained after thresholding
using this approach may be the same as that of the likelihood
ratio test with equal prior assumption, but the value of πs
gives a measure of the confidence on the decision, which can
be used for refining the speaker model.

Algorithm 1 Speaker Spotting Algorithm
1: Initialize π0

s = π0
u = 1

2 , i = 0.
2: Compute the likelihoods P(Xn|θs), and P(Xn|θu), ∀n.
3: repeat
4: i← i+ 1
5: Compute:

γ(zn, s) =
πi−1
s P(Xn|θs)

πi−1
s P(Xn|θs) + πi−1

u P(Xn|θu)
.

6: Update:

πis =
1

N

N∑
n=1

γ(zn, s), and πiu = 1− πis.

7: until Convergence, i.e., |πis − πi−1
s | ≤ 0.01.

B. Target speaker and Background models

The formulation above assumes the knowledge of the pdfs
of the target speaker and the background. We used GMMs to
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represent the pdfs. Background model is trained first using the
feature vectors of the entire speech recording. The parameters
of the model are estimated with maximum-likelihood crite-
rion using the EM algorithm. Now, the segment marked as
target speaker is used to estimate the speaker model through
adaptation, i.e., through the MAP adaptation technique [2],
[13]. The idea here is to have the background model capture
speaker-independent distribution of the feature vectors, while
the adaptation personalizes the model to the target speaker.
Through this the difference between the speakers is captured
better by the model differences. Also, the training data for the
background model and for the target speaker adaptation are
taken from the same speech recording.

C. Iterative refinement

Performance of the proposed approach depends very much
on the target speaker model adapted from the background
model, which is data dependent. The accuracy and reliability
with which it represents the speaker is directly related to the
number of “reliable” feature vectors from initial training seg-
ment, based on which the model is adapted. The performance
can be improved by updating the model with high-confidence
segments obtained after speaker spotting and this can be
iterated along with speaker spotting until convergence, i.e.,
negligible change in the estimated speaker segments. We de-
fine the high-confidence segments as those segments where the
posterior speaker probability (πs) obtained through the speaker
spotting algorithm, to be greater than 0.9. These segments of
feature vectors are appended to the initial training segment and
speaker model is updated using the MAP adaptation similar to
the previous section. The updated model is then used to refine
the speaker positions in the speech recording.

D. Feature Extraction

MFCCs, which describe the perceptually relevant timbre
features, are the most widely used feature vectors for speech
recognition tasks. The MFCC vectors are often augmented
with their first and second derivatives to account for the
temporal dynamics of the speech signal. The addition of the
derivative vectors increases the dimensionality of the total
feature vectors, which in turn increases the parameters of the
underlying distribution. For a given number of feature vectors,
increasing the feature vector dimension results in poor model-
ing of the underlying distribution (curse of dimensionality). To
overcome this problem, we consider dimensionality reduction
of the MFCC vectors appended with the derivative features.
The first three derivatives of the 13-dimensional MFCC vectors
are appended with MFCCs to create a 51 (12 + 3 × 13)-
dimensional feature vector (by omitting energy component of
only the MFCCs and including the energies of all the deriva-
tives). PCA is then used to compute the 12 largest principal
components of the 51-dimensional feature vector, which is
then used as the feature vector for modeling. Feature vectors
from the entire speech recording are used for estimating the
principal components. Feature vectors are computed every
10 ms using a Hann window of duration 25 msec.

III. EXPERIMENTS AND RESULTS

We first study the performance of the proposed algorithm
using a synthetic (concatenated) database with known ground
truth. We used GMMs with diagonal covariance matrices
for the background and target speaker models. Only mean
adaptation is performed for the estimation of speaker model.
Evaluation is performed on segments of duration 2 sec (200
vectors) with 400 msec (40 vectors) overlap between succes-
sive segments. Fig. 3 illustrates a typical result of the speaker
spotting algorithm using a recording of K = 3 speakers. A
5 sec sub-segment from the first segment (shown in red) is
chosen as the training data. We observe that, (i) estimated
speaker posterior probability πs is > 0.9 for the training
segment, (ii) for non-target speaker segments (blue and cyan),
πs is consistently smaller except for a few segments, (iii)
for target speaker segments, πs is more than 0.5 for most
of the segments except for the segment around 100 sec
(false negative), (iv) at the transition segments from target to
non-target speaker, πs value decreases gradually due to the
overlapped evaluation of the segments, and increases gradually
at the transitions from non-target to target speaker, and (v) for
the segment (after 20 sec) with overlapped speakers, we see
that πs is significant during the overlapped portions, this can
be used to identify target speaker in such segments also.

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Time (sec)

π s

Estimated speaker posterior probability and ground truth

Fig. 3. Estimated speaker posterior (green) along with the ground truth for
target speaker (red), and the other two speakers (blue and cyan).

A. Concatenated Records

We generated a conversation example using the speech
recordings from Starkey database [14]. The database consists
of recordings from 8 male speakers and 8 female speakers
reading a single passage. The recordings are down-sampled to
8 KHz sampling rate from the original Fs of 44.1 KHz. A
conversation is generated by concatenating speech segments
taken from different speakers. For a conversation with K
speakers, we picked K speakers randomly from the total of 16;
and for each segment of the conversation, one of the selected
K speakers is randomly chosen, and a segment is taken from
a random position in the recording, corresponding to that
speaker. Length of each segment is random with a uniform
distribution between 3 and 10 sec. Number of segments in each
conversation is chosen to be 40 (so a typical record generated
is of length 120 to 400 sec). Experiments are carried out on
100 test conversations each, for different number of speakers
K in the record.

B. Performance Measures

The performance of speaker spotting is obtained as the
fraction of true positives, false positives, and false negatives,
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as defined below (in set notation):

True Positive (TP) =
|A ∩B|
|B|

False Positive (FP) =
|A ∩Bc|
|Bc|

False Negative (FN) =
|Ac ∩B|
|B|

where, |.| is the cardinality of the set argument, A is the set
of frame indices where speaker is noted as present by the
algorithm, and B is the set of frame indices from the ground
truth. The overall performance is studied using the F-measure,
defined as,

F-measure =
2TP

2TP + FP + FN
. (4)

In the experiments below, we used M = 16 mixtures in
GMM, 6 sec of training segment for adaptation and PCA
reduced features, unless specified explicitly.

C. Effect of Number of Mixtures

Consider the distance between the mean super-vectors of
the background model and the speaker model adapted from
the same, i.e., ‖µ̄u − µ̄s‖2, where µ̄() is the concatenation
of the mean vectors of all the mixture components. Fig. 4(a),
shows the distance averaged over all the ground truth segments
from 100 conversations, as a function of the number of
mixtures. Interestingly, we see that the distance increases with
the number of mixtures, initially up to 32 mixtures, but then
decreases as the model size becomes large. A similar behavior
is observed in the average posterior probability of the target
speaker evaluated on the training segment, as shown in Fig.
4(b). We can attribute this to the limited data adaptation. In the
case when number of mixture components is high, the number
of feature vectors per parameter of the model will be low,
and hence the adapted speaker models will be only slightly
different from the background model, resulting in similar
likelihoods for the background and target speaker models. Fig.
4(c) shows the speaker spotting performance (in terms of avg.
true positive values) as a function of the number of mixtures,
for 100 simulated conversations comprising different speakers.
We see that the performance is poorer at higher number of
mixtures, which is again attributed to the limited adaptation
data as described above. Interestingly, better performance is
obtained for K = 3 speaker data compared to K = 2, which
is studied further in sec. III-F.

D. Feature set selection

The number of training examples required to train a model
depends on the number of parameters in the model. Increasing
the feature dimension, such as by appending the derivative
features to MFCCs in a typical speech application, results in
an increase in the number of model parameters for the same
number of mixture components in the GMM. Hence, if the
size of training set is fixed, features with higher dimensionality
learn poor models compared to features with smaller dimen-
sionality. Table I shows the spotting performance with different
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Fig. 4. (a) Background and target speaker model separation, (b) average
posterior probability of target speaker on the training segment and (c) True
positives as a function of the number of mixtures.
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Fig. 5. Performance as a function of the initial training data duration.

feature sets. The experiment is performed on conversations
with K = 3 speakers. We see that the performance decreases
as expected with increase in the dimension of the feature
vectors. Best performance is obtained for a 12-dimension
PCA reduced features. This shows that the derivative features
contain complementary information, which is useful for the
task at hand, and this is captured through PCA reduced
features, resulting in improved performance.

TABLE I
TRUE POSITIVES FOR DIFFERENT FEATURES

Feature (#dimensions) TP
MFCC (12) 0.8303
MFCC+∆ (25) 0.7887
MFCC+∆∆ (38) 0.7307
MFCC+∆∆∆ (51) 0.6791
PCA reduced (12) 0.8749

E. Effect of Duration of training segment

Estimation of the parameters of a model depends on the
amount of training data available. Fig. 5 shows the perfor-
mance of the proposed speaker spotting as a function of
the duration of the training segment marked by the user.
The conversations used for the experimentation have K = 3
speakers. We used PCA reduced features as feature vectors in
this experiment. We see that the performance increases as more
training data is made available for training. The F-measure is
more than 0.9 for training segment durations above 5 seconds.

F. Effect of Number of speakers in the conversation, and
Model Re-estimation

The background model for a conversation with more number
of speakers will capture more diverse features than that for
a conversation with say only two speakers. Due to this, the
speaker model adapted from such a diverse background model
will represent better the target speaker information compared
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Fig. 6. (a) Background and target speaker model separation, (b) False
positives, (c) True Positives, and (d) F-measure, as a function of the number
of speakers K (Iter=0 corresponds to speaker spotting with training segment
chosen by user).

to when the number of speakers is less. Fig. 6 (a) shows a
plot of the average of the distance between the super-vectors
of the background model and the adapted speaker models as
a function of the number of speakers in the conversation. We
see that, the distance increases with increase in the number
of speakers as predicted from the above observations. Now,
we expect that the performance of speaker activity detection
algorithm should improve with increase in the number of
speakers. Fig. 6 (b, c) show the false positives and true
positives as a function of the number of speakers. We see
that the true positives increase with increase in the number of
speakers in the conversation. However, we notice that the false
positives also increase with increase in the number of speakers.
Fig. 6(d) shows the F-measure, which is increasing with the
number of speakers in the conversation showing better overall
performance obtained for conversation with more speakers.
Fig. 6 also shows the performance as a function of the
iterations for model re-estimation using ”high confidence” data
as discussed in earlier sections. We see that the performance
improves significantly in the poor performance regions, i.e.,
when the number of speakers is less.

G. Real recordings

The experiments so far considered concatenated records. In
this section, we experiment with a real recording of 5 minutes
duration (sampling rate Fs = 8 KHz). The recording contains
K = 3 speakers, one male (speaker−1) and two females
(speakers−2, 3), reading different paragraphs from a novel.
The recording was made in a lab environment with fan noise
in the background, and also have page turns in a few places.
Speaker 1 is closer to the microphone compared to the other
two speakers, and hence louder in the recorded conversation.
We used PCA reduced features with M = 16 mixtures in
GMM for the speaker spotting algorithm. Training segment
duration is taken to be 6 sec. Table II shows the performance
for the three individual speakers. The true positive rate is more
than 0.95 for all the speakers, however there are significant

TABLE II
PERFORMANCE ON A REAL RECORDING

Target True Positives False Positives F-measure
Speaker 1 0.9960 0.0103 0.9919
Speaker 2 0.9559 0.4270 0.80251
Speaker 3 0.9792 0.0392 0.9702

number of false positives for speaker−2. Almost perfect
detection of speaker−1 is due to the proximity to microphone
(signal-to-ambient noise ratio is higher) and also due to the
energy level difference with respect to the other two speakers.

IV. CONCLUSION

We studied the speaker spotting problem in speech con-
versations using latent variable formulation and GMM-UBM
framework. Experimentally, we see that for conversations
lasting a 3 to 5 minutes, using PCA reduced features along
with 8 to 32 mixture GMM models and 6 to 8 sec of training
data for adaptation give F-measure > 0.9. Also, the proposed
approach gives a soft-decision on the speaker presence which
is useful in conversations with over-lapped speakers.
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