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Abstract—Real-time industrial wireless systems sharing a
crowded spectrum band require active coexistence management
measures. Identification of wireless interference is a key issue for
this purpose.

We propose an efficient implementation of a wireless inter-
ference identification (WII) approach called neuro-fuzzy signal
classifier (NFSC). The implementation in Matlab / SIMULINK
is based upon the wideband software defined radio Ettus USRP
N210. The implementation is evaluated in six selected heteroge-
neous and harsh industrial scenarios within the license-free 2.4-
GHz-ISM radio band with variously combined standard wireless
technologies IEEE 802.11g-based WLAN and Bluetooth. The
evaluation of the NFSC was performed with a binary classifi-
cation test with the statistical measurement metrics sensitivity
and specificity.

I. INTRODUCTION

License-free spectrum bands such as the 2.4-GHz-ISM
band are shared between incompatible heterogeneous wireless
communication systems. In industrial environments, typically
standardized wireless communication systems within the 2.4-
GHz-ISM band are wide-band high-rate IEEE 802.11 b/g/n,
narrow-band low-rate IEEE 802.15.4-based WirelessHART
and ISA 100.11a, and IEEE 802.15.1-related PNO WSAN-
FA and Bluetooth. Additionally, the spectrum band is shared
with many proprietary wireless technologies which target spe-
cific application requirements such as the IEEE 802.11-based
industrial WLAN (iWLAN) from Siemens AG, FHSS-based
Trusted Wireless from Phoenix Contact and IEEE 802.15.1-
based WISA from ABB Group.

Any radio-frequency interference can cause packet loss and
transmission latency for industrial radio communication sys-
tems. Both effects have to be mitigated for real-time medium
requirements. Therefore, the norm IEC 62657-2 [1] for in-
dustrial radio communication systems recommends an active
coexistence management for reliable medium utilization. They
recommend (i) manual, (ii) automatic non-cooperative or (iii)
automatic cooperative coexistence management. The first ap-
proach is the most in-efficient one, due to time-consuming
complex configuration effort. The automatic approaches (ii)
and (iii) enable efficient self-reconfiguration without man-
ual intervention and radio-specific expertise. An automatic

cooperative coexistence management (iii) requires a control
channel, i.e. a logical common communication connection be-
tween each coexisting wireless system to enable deterministic
medium access. In case of a single legacy coexisting wireless
system without such connection, the non-cooperative approach
(ii) is recommended. Non-cooperative coexistence manage-
ment approaches are aware of coexisting wireless systems
based on independent wireless interference identification (WII)
and mitigation.

The requirement of WII relates to the well-known research
field of specific emitter identification (SEI) [2] which is also
called physical layer identification [3]. In contrast to SEI,
WII targets the identification of multiple wireless technologies
sharing the same spectrum band. So, the approaches have to
be independent of wireless technology specific characteristics
such as modulation, spreading technique, coding, or data.
Further, WII suffers from limited knowledge of the identified
wireless technologies. While many radio systems are based
upon a-priori known standardized wireless technologies such
as IEEE 802.11, IEEE 802.15.1 and IEEE 802.15.4, some
utilize application-specific modulation, spreading technique
or coding approaches. Therefore, modulation-based SEI ap-
proaches such as proposed by Brik et. al. [4] are not prac-
ticable. Advantageous are technology-independent waveform-
based SEI approaches such as the FFT-based turn-on transient
analysis approach proposed by Danev et. al. [5].

In this paper, we propose an efficient implementation of a
WII approach for industrial wireless environments based on
fuzzified neural networks [6].

The paper is structured as follows. The subsequent section
II introduces the WII approach called neuro-fuzzy signal
classifier (NFSC). Section III discusses the results of extensive
evaluation. The final section IV concludes this paper.

II. FUZZIFIED NEURAL NETWORK BASED WIRELESS
INTERFERENCE IDENTIFICATION

A signal classification process usually consists of several
cascaded layers. The input signal x(t) is in general a super-
position of the desired signal, various other unknown signals,
and noise. Prominent signal features are extracted from this
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superposition, such as symbol rate, modulation, bandwidth
etc., and used next as distinct features for the signal classifier.
The classifier assigns input signals to different classes, here
primary user (PU) signal labeling, depending on the extracted
information from the features.

A NFSC was proposed, which utilizes a-priori known sig-
nal features to classify PU systems by utilizing fuzzy logic
based rules [7]. The utilized distinct features are: (i) Center
frequency, (ii) bandwidth, (iii) pulse shape, (iv) time behavior
and (v) hop behavior of PU systems.

The NFSC consists of six layered neural network as shown
in Figure 1. A neural network comprises process elements, or
neurons, which are interconnected to form a computation net-
work. The functionality of each layer will be discussed in the
following sections of this section. Input and fuzzification layer
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Fig. 1: Block diagram of the NFSC (adapted from [7])

consist of only one process element each. The inference layer
consists of two process elements for each PU system, thus
for n PU systems there are 2n process elements in this layer.
There is exactly one process element corresponding to each
channel of each PU system in all other layers. Consequently,
if mi denotes the total number of frequency channels of the
ith PU system, then each of these layers contains

∑n
i=1mi

process elements.

A. Input Layer
In the first layer, a discrete logarithmic power spectrum

density (PSD) is computed from the acquired discrete complex
input signal. The discrete complex input signal represents
in-phase and quadrature values. In general, from a discrete
input signal x[n] its continuous Fourier transform X(ω) is
x[n] c sX(ω). However, the practical implementation of the
discrete Fourier transform on a computer nearly always uses
the fast Fourier transform (FFT) algorithm. In this paper, the
FFT algorithm with some additional computations is applied
to compute the desired discrete logarithmic PSD P [k]:

X(ω) 7→ P [k] (1)

The computation of the discrete logarithmic PSD P [k] is
performed in a frame-based manner, depending on the selected
FFT length 2m,m ∈ N. A rectangular window function is
applied to the discrete input signal x[n], that divides the
input signal into 2m samples-length non-overlapping frames.
Subsequently, the discrete PSD of each frame is computed.
Note, the iterator variable n describes discrete points in time,
whereas k describes discrete frequency points in the spectral
range. The finite set K of all discrete frequency points k is:

K = {0, 1, . . . , 2m − 1} (2)

and their corresponding discrete frequencies are described by
the finite set of frequencies FK:

FK = f0 + ∆f · {−2m−1 − 1,−2m−1, . . . , 2m−1} (3)

where f0 is the selected center frequency and ∆f is the
frequency resolution of the PSD. ∆f is the ratio of the
bandwidth of the input signal, called display bandwidth BDI,
and the selected FFT length ∆f = BDI/(2m − 1). Since this
paper focuses on classifying PU systems in the 80 MHz wide
2.4-GHz-ISM radio band, all elements of the frequency set FK

lie within the continuous ISM radio band frequency interval
f ISM = [2400, 2480] MHz.

B. Fuzzification Layer

In the second layer, the incoming PSD frame is fuzzified by
utilizing a specific membership function. More precisely, with
the membership function µP[P [k]] the incoming PSD frame
P [k] is mapped to a membership value between zero and one:

µP[P [k]] : UP → [0, 1], P [k] 7→ F [k] (4)

where UP is the universe of discourse in terms of fuzzy logic
for the PSD frame P [k]:

UP = {Pmin ≤ P [k] ≤ Pmax

∣∣∣k ∈ K} (5)

The applied specific membership function is:

µP[P [k]] = |(Pmin − P [k])/(Pmin − Pmax)| (6)

where Pmin is the minimum and Pmax the maximum constant
of the incoming PSD frame. The resulting fuzzified PSD frame
F [P [k]] is a fuzzy set and can be written as:

F [P [k]] = {(P [k], µP[P [k]])

∣∣∣∣P [k] ∈ UP } (7)

It can be simplified, since F [P [k]] depends on P [k] and P [k]
itself depends on k, to:

F [k] = {(k, µP[k])
∣∣∣k ∈ Uk} (8)

where Uk is the universe of discourse for k, which is equal to
the finite set K. The membership function definition in eq. (4)
can be rewritten through the simplification as:

µP[k] : Uk → [0, 1], k 7→ F [k] (9)

The simplified fuzzified PSD frame F [k] is named as fuzzified
power spectrum (FPS) in this paper.
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C. Filtering Layer

The third layer filters the incoming FPS based on the PU
system’s frequency channels by a pulse shape selection. In
particular, the incoming FPS F [k] filtered over the jth channel
of the ith respective PU system is represented as:

µFI
i,j [k] : [0, 1]→ [0, 1], F [k] 7→ Fi,j [k] (10)

where µFI
i,j [k] is a fuzzy membership function used as filter.

For µFI
i,j [k] the pulse shape of the corresponding PU system

is used, whereby in this paper the following rectangular pulse
shape was applied:

µFI
i,j [k] = rect(

f [k]− f0i,j
Di ·BPU

i

) (11)

The rectangular pulse shapes are depending on three param-
eters: (i) The channel bandwidth BPU

i of the ith PU system;
(ii) the constant Di, which can be selected to adjust the pass-
band width of the filter for the ith PU system; and (iii) the
center frequency f0i,j of the jth channel of the ith respective
PU system. Furthermore, the discrete frequency f [k] is an
element of the finite set of frequencies FK, see eq. (3). For a
better understanding of the filtering, an example with one PU
system, i = 1, is discussed next and depicted in Figure 2. It
is assumed that the PU system has two frequency channels:
j = [1, 2]. An example FPS F [k] is used as the input signal for
the filtering layer, as depicted in upper Figure 2. Since only
one PU system with two frequency channels is considered,
two example fuzzy membership functions are sketched in
center Figure 2. A rectangular pulse shape is chosen for both
membership functions, whereas the first one is described by
µFI
1,1[k] and the second one by µFI

1,2[k]. The two resulting
filtered FPSs are presented in lower Figure 2. In the first
filtered FPS F1,1[k] is only the left side of the incoming FPS
F [k] present, whereas the right side of F [k] is suppressed by
the filter. On the other hand, the second filtered FPS F1,2[k]
contains only a part of the right side of F [k], whereas the left
side of F [k] is suppressed.

D. Similarity Layer

The fourth layer measures the similarity between the in-
coming filtered FPS and the PU system’s ideal pulse shape
to evaluate the presence or absence of the corresponding
PU system in a specific frequency channel. More exact, the
similarity is measured by comparing the incoming filtered FPS
Fi,j with the ideal pulse shape µPS

i,j [k] of the respective PU
system to generate a similarity measure (SM) score Si,j for
each jth channel of the ith respective PU system. The resulting
SM score can be simply compared with a predefined threshold
value to evaluate the presence or absence of the corresponding
PU system. The comparison of the filtered FPS Fi,j [k] with
the ideal pulse shape µPS

i,j [k] is accomplished by computing
the SM with the membership function µS

i,j :

Si,j = µS
i,j =

∑
f∈FK min(Fi,j [k], µPS

i,j [k])

max(
∑
f∈FK Fi,j [k],

∑
f∈FK µPS

i,j [k])
(12)
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Fig. 2: Example of filtering with one PU system and two frequency channels

where Si,j is the measure of the presence of the ith PU
system in its respective jth channel. In other words, with the
membership function µS

i,j [k] the incoming filtered FPS Fi,j [k]
is mapped to a membership value between zero and one:

µS
i,j : [0, 1]→ [0, 1], Fi,j [k] 7→ Si,j (13)

In this paper is the same rectangular pulse shape applied for the
ideal pulse shape µPS

i,j [k] as the one for filtering, see eq. (11),
only the constant Di is set to one, because here is the ideal
pulse shape required. The resulting SM score is a fuzzy set
and can be written as:

Si,j = {(Fi,j [k], µS
i,j)
∣∣∣Fi,j [k] ∈ [0, 1]} (14)

where Si,j only contains one degree of membership. Eluci-
dated, Si,j comprises only one single value, the degree of
membership, for a specific i and j. In contrast, the fuzzy set
Fi,j [k], that contains an ordered set of fuzzy pairs

(
k, µP[k]

)
for a specific i and j. Next, this single value Si,j is compared
with a predefined threshold value γS

i for each PU system, to
categorically label the presence or absence of a PU system
using the membership function µL

i,j

[
Si,j
]
:

Li,j = µL
i,j [Si,j ] =

{
1 if Si,j ≥ γS

i ,

0 otherwise.
(15)

where Li,j is a binary time series representing SM layer
labeling. Using fuzzy set notation it can be represented as:

Li,j = {(Si,j , µL
i,j

[
Si,j
]
)
∣∣∣Si,j ∈ [0, 1]} (16)

Note, the label Li,j completely preserves frequency and time
related information of an individual PU system. Hence, two
very identical PU systems in terms of frequency channel
definitions can not be differentiated by the labels Li,j . Center
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frequencies of the frequency channels, channel bandwidth, or
the quantity of the frequency channels are such channel defini-
tions. Therefore, another feature is introduced in the following
remaining two layers in order to discriminate between those
PU systems.

E. Statistics Layer
In the second last layer, two statistical measures are utilized,

in order to distinguish a hopping system from a non-hopping
system, when two PU systems possess identical channel def-
initions. Descriptive statistics summarize an entire data set
to describe the main features of it. Central tendency and
statistical dispersion are commonly applied, where the former
measures how the data is clustered around a single value
and the latter measures the spread of data. On the one hand,
transmissions of a hopping system are reasonably spread over
its hopping channels and have a high statistical dispersion as
long as the total number of captured hops is fairly large. On
the other hand, a non-hopping system exhibits high central
tendency, since all transmissions are expected to be in a single
frequency channel. Non-hopping systems maintain cumulative
moving average of incoming binary values Li,j as a measure
of central tendency CTi,j as given by the membership function
µCT
i,j

[
Li,j

]
:

CTi,j = µCT
i,j

[
Li,j

]
=
Li,j + (q − 1) · CT prev

i,j

q
(17)

where q is the total number of process frames and CT prev
i,j

is the previous computed measure of central tendency. On
the other side, only the first occurrence over each hopping
channel is remembered for a hopping system as a measure
of statistical dispersion SDi,j . It is given by the membership
function µSD

i,j

[
Li,j

]
:

SDi,j = µSD
i,j

[
Li,j

]
=

{
1 if Li,j = 1,

unchanged otherwise.
(18)

F. Inference Layer
Finally, in the last layer a decision is made whether a

present PU system is a hopping or non-hopping system. On
the one hand, the membership function µNH

i

[
CTi,j

]
is applied

to evaluate the presence of a non-hopping PU system:

PUNH
i = µNH

i

[
CTi,j

]
=

{
1 if max

i = const.

(
CTi,j

)
≥ γCT

i ,

0 otherwise.
(19)

where γCT
i is a specific threshold value for the ith PU system.

On the other hand, the presence of a hopping PU system is
evaluated by the membership function µH

i

[
SDi,j

]
:

PUH
i = µH

i

[
SDi,j

]
=

{
1 if mean

i = const.

(
SDi,j

)
≥ γSD

i ,

0 otherwise.
(20)

where γSD
i is a specific threshold value for the ith PU system.

III. RESULTS AND ANALYSIS

The WII approach NFSC was implemented within Matlab
SIMULINK as shown in 3. Thereby, the SDR Ettus USRP

TABLE I: Implementation and setup parameters

Parameter Value

Center frequency f0
SDR 2.423 GHz

Display bandwidth BDI 10 MHz
Resolution bandwidth ∆f 39.22 kHz

Min. incoming power density 0 dBm
Max. incoming power density -11 dBm

Filtering constant Di 20
Channel attenuation (coax. cable) 2 dB

Transmission power 0 dBm

N210 was connected directly via Gigabit Ethernet. The im-
plementation and setup parameters are listed in Table I.

A. Measurement Metrics

First of all, although the NFSC’s last two layers are pro-
posed in [7] for distinguishing between a hopping and a non-
hopping PU system, the evaluation of the NFSC is carried
out directly through the also recorded similarity measure.
The similarity measure for all corresponding PU frequency
channels were recorded for ten seconds.

As a first step of the statistical analysis, a normalized
frequency distribution, also known as empirical probability, is
computed from the SM. All histograms were created with 100
bins for the similarity interval from zero to one. As the second
step, all histograms from all recorded frequency channels are
compared with each other. As the last step, mean and standard
deviation are computed for each frequency channel out of the
corresponding histograms.

The classification performance of the NFSC is evaluated
through the two statistical measures: sensitivity and speci-
ficity. Sensitivity and specificity are statistical measures of the
performance of a binary classification test. They measure the
proportion of actual positive and negative decisions which are
correctly identified as such, respectively. With the amount of
correctly identified classes TP, incorrectly identified classes
FP, correctly rejected classes TN, and of incorrectly rejected
classes FN, sensitivity TPR and specificity TNR are defined as
TPR = TP/(TP + FN) and TNR = TN/(TN + FP) which is
also known as true and negative positive rate, respectively.

B. Industrial Scenarios

Since this paper focuses on system classification within
the 2.4-GHz-ISM radio band in an industrial environment,
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Fig. 3: Matlab SIMULINK implementation block diagram of NFSC layers
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TABLE II: Selected industrial wireless scenarios

Industrial Channels Temp. medium occupancy

scenario WLAN Bluetooth WLAN Bluetooth

1 1 - 84.47% -
2 1 - 30.68% -
3 - 1, 2, ..., 79 - 39.36%
4 - 1, 2, ..., 79 - 20.80%
5 1 23, 24, ..., 79 84.47% 39.36%
6 1 23, 24, ..., 79 30.68% 20.80%

two standard wireless technologies are chosen as example PU
system. It is assumed that an industrial automation is equipped
with a WLAN (IEEE 802.11g) as a base infrastructure. On the
other hand, Bluetooth is used as a wireless PAN at electrical
machines, such as for transmitting sensor data of an industrial
robot. Thereby, the scenarios are utilized with high and low
temporal medium occupancy load. An overview of the utilized
industrial scenarios in this evaluation is presented in Table II.

Fig. 4: Sensitivity of all industrial scenarios classified as WLAN

Fig. 5: Sensitivity of all industrial scenarios classified as Bluetooth

Fig. 6: Specificity of all industrial scenarios classified as WLAN

C. Experimental Results

The outcome of the evaluation as depicted in Figure 4, 5,
6 and 7 was a low sensitivity of the NFSC throughout all

Fig. 7: Specificity of all industrial scenarios classified as Bluetooth

industrial scenarios, while specificity was measured in general
high. Averagely, IEEE 802.11g was detected with a moderate
rate of 55% and Bluetooth only with 15%. On the contrary, a
typical specificity of 50% were measured. For Bluetooth even
up to 90%.

IV. CONCLUSION

An efficient implementation of a WII approach called neuro-
fuzzy signal classifier (NFSC) for industrial wireless environ-
ments was implemented and evaluated. The implementation
in Matlab / SIMULINK is based upon a wideband software
defined radio system Ettus USRP N210. Furthermore, a clas-
sification performance evaluation was performed in six se-
lected heterogeneous and harsh industrial scenarios within the
license-free 2.4-GHz-ISM radio band with variously combined
standard wireless technologies IEEE 802.11g-based WLAN
and Bluetooth. The evaluation of the NFSC was performed
by a binary classification test with the statistical measurement
metrics sensitivity and specificity.

The results show that absent PU systems are better detected
by the NFSC as present ones. NFSCs scope of application
is, therefore, rather detecting free gaps in its radio resources
than identifying PU systems by their utilized standard wireless
technologies.
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