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Abstract—Block matching 3D collaborative filtering (BM3D)
is one of the most popular denoising technique based on data
sparsity concept applied to specially structured data. In this
paper we develop this technique for complex domain, i.e. for
application to complex-valued data. Sparsity as an approximation
technique can be addressed directly to complex-valued variables
or to real-valued pairs phase/amplitude and real/imaginary parts
of complex-valued variables. As a result we arrive to various
ways of development and obtain a set of quite different algo-
rithms. The algorithms proposed in this paper are composed
from two components: nonlocal patch-wise grouping and high-
order singular value decomposition (HOSVD) for grouped data
processing. The latter gives data adaptive complex-valued bases
for complex-valued data or real-valued bases for joint processing
of the pairs phase/amplitude, real/imaginary parts of complex-
valued variables. Comparative study of the developed algorithms
is produced in order to select the most efficient ones.

I. INTRODUCTION

This paper is focussed on a special wide class of image/data
processing problems dealing with complex-valued variables. In
particular, in optics a monochromatic wavefront is modelled as
complex amplitude of the form uo(x) = ao(x) exp(iϕo(x)),
where amplitude ao(x) and phase ϕo(x) are unknown vari-
ables of interest. The areas of applications are from astronomy
and engineering to medicine and biology with the main focus
on phase reconstruction or phase imaging. Phase imaging
is one of the key instruments in optics allowing to make
visible invisible features of specimens and produce precise
measurements with resolution on the level of wavelengths. It
is possible due to a phase sensitivity of coherent wavefront
to shape and internal structure of specimens. The wavefront
phase cannot be measured directly because all measurement
instruments are sensitive with respect to the intensity but not
to phase. For instance, in interferometry and holography a
measured intensity has a form [1]:

I(x) = |uo(x) + ur(x)|2, (1)

where uo(x) and ur(x) stand for object and reference
wavefronts, respectively, and I(x) is a measured intensity
(power).

For monochromatic coherent imaging both object and ref-
erence wavefronts are complex-valued:

uo(x) = ao(x) exp(iϕo(x)),
ur(x) = ar(x) exp(iϕr(x)).

(2)

Then, the phase imaging means a reconstruction of the phase
ϕo(x) from usually noisy measurements of I(x). In Fig.1
we show phase and amplitude images of a fly’s wing as a
specimen obtained by the phase-shifting holography. While
the laser beam propagates through the wing its phase and
amplitude are changing due to variations of refractive index
(for phase) and transparency (for amplitude). One may note
that while the phase and amplitude images are far from being
identical they are correlated and similar patterns can be seen
in these images.

a b
Fig. 1. Fly’s wing amplitude (a) and phase (b) images.

In computational imaging sparse and redundant representa-
tions have been successfully developed in the last years as a
general concept. It is based on the assumption that there exists
a small number of items such that image can be represented
exactly or approximately with a good accuracy. Here we wish
refer to the recent overview [2] of the complex domain sparsity
concentrated on applications in optics.

Group (or structured) sparsity. In this technique the sparsity
is introduced artificially by special grouping of observations.
The similarity of the grouped patches enables a high-level
sparsity of the grouped data and high efficiency of small-
size approximations (e.g. [3], [4]. This kind of techniques
became extremely popular after the work on Block Matching
3D (BM3D) filtering [5]. Recently the group sparsity concept
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was generalized for the complex domain. In this development
the algorithm works directly with complex-valued variables
without separation phase and amplitude. The main problem
of this development is a design of complex-valued bases
enabling the sparsity in the complex domain. It was done
in two different ways: the SpInPhase algorithm is based on
complex domain dictionary learning with internal and external
dictionaries [6] and the BM3D based algorithm uses High-
Order Singular Value Decomposition (HOSVD) [7], [8].

The complex-valued uo can be considered as a function of
two pairs of real-valued variables: amplitude and phase, ao,
ϕo, and real and imaginary parts of uo, Re(uo) = ao cosϕo,
Im(uo) = ao sinϕo.

Respectively, the sparsity for the complex-valued uo can be
imposed in the following three different types:

(I) Complex domain sparsity treating uo as a complex-
valued variable;

(II) Sparsity imposed on two real-valued variables: ampli-
tude and phase, ao, ϕo;

(III) Sparsity imposed on two real-valued variables: real
and imaginary parts of uo, Re(uo) = ao cosϕo, Im(uo) =
ao sinϕo.

In the last two cases the sparsity is assumed for 2D vectorial
real-valued variables. For comparison of different types of
sparsity we compare their efficiency for complex domain
denoising, i.e. retrieval of the complex-valued uo(x) from
noisy data given with complex-valued noise. Denoising of
phase and amplitude is appeared as an avoidable routine in
many algorithms and often can be formalized to considered
complex domain setting.

Extensive researches in image processing show that a good
denoiser can be efficiently incorporated in many procedures as
algorithm from the shelf for various problems. Even more, a
denoiser as a component of the algorithm appears as a solution
in many variational setups (e.g. [9], [10]).

Thus, the denoising algorithms developed and studied in
this paper are of general interest for different applications. The
following model is used for the observed data z : X → C,
where X ⊂ Z2 is 2D grid of size

√
n×
√
n:

z(x) = uo(x) + ε(x), (3)

where x ∈ X , uo(x) ∈ C
√
n×
√
n is a clean complex-valued

object, and ε(x) = εI(x) + jεQ(x) ∈ C
√
n×
√
n, is complex-

valued zero-mean Gaussian circular white noise of variance σ2

(i.e., εI and εQ are zero-mean independent Gaussian random
variables with variance σ2/2).

The contribution of this paper is two fold. First, a develop-
ment of novel complex domain denoising algorithms using
the three types of the sparsity modeling mentioned above.
While the algorithm based on the sparsity Type I has a
predecessor proposed in [7], [8] and differs from it by the
modified thresholding rules, other algorithms are completely
novel. The complex domain Wiener filters are developed
as post-processors for these algorithms. Second, extended
simulation experiments targeted on the accuracy analysis and

the comparison of the algorithms. It is shown that overall the
algorithms based on the sparsity Types I and III are enabling
the best accuracy.

II. ALGORITHMS

The proposed algorithms copy the structure of the standard
BM3D filter as it is introduced in [5]. The difference concerns
the following important aspects: the grouping is produced for
complex-valued variables instead of the real-valued ones in
[5], the transforms used for the data analysis are not fixed
as it is in [5] but data adaptive and generated using High-
Order Singular Value Decomposition (HOSVD), the input
variables of HOSVD are different for different algorithm:
complex-valued variables, imaginary and real parts or phase
and amplitude of complex-valued variables. Similar to the
standard BM3D the proposed algorithms are composed from
two stages: thresholding following by Wiener filtering. This
new technique can be understood as a generalization for
the complex domain of the BM3D-SAPCA algorithm [11],
where SVD is used for design of 2D orthonormal bases for
patches, and also of HOSVD-BM3D proposed in [12], where
HOSVD is exploited as a generator of 3D/4D real domain
orthonormal transforms. The flow chart is the same for all
proposed algorithms. It is shown in Fig.2.

A. CD-BM3D: COMPLEX DOMAIN SPARSITY (Type I)

1) Thresholding filtering: We start from the algorithm
based on complex-domain sparsification of uo. The abbrevi-
ation CD-BM3D is introduced for this algorithm. Here CD
(complex domain) emphasizes the succession of this algorithm
with respect to the standard BM3D.

According to the conventional procedure in patch-based
image restoration, the noisy

√
n ×

√
n image z ≡ {z(x),

x ∈ X} is partitioned into small overlapping rectangu-
lar/square patches N1×N2 defined for each pixel of the image.
The algorithm is composed from five basic steps: grouping,
collaborative filtering via HOSVD transform (e.g. [13]), hard-
thresholding of HOSVD spectrum, inverse HOSVD transform,
and aggregation of the overlapping patch estimates. Details of
these five steps can be seen in [7], [8]. The flow chart of this
algorithm can be seen in the left part of Fig.2.

2) Wiener filtering : The Wiener filter has two input vari-
ables: the noisy observation z and the reference variable uref

carrying some information on uo. Conventionally in many
algorithms for instance in BM3D [5] uref is the output of
the thresholding algroithm. The following five steps of the
algorithm are similar to the steps of the thresholding algorithm
but with a number of modifications.

1. Grouping. The grouping is produced for the reference
variable uref giving the groups denoted as Guref

r . In parallel
we form the groups from the input variable z. These groups
for z are formed exactly accordingly to Guref

r , i.e. the group
Gz

r includes the same patches as Guref

r but taken from z.The
matched patches are stacked to form two 3D arrays of size
N1 ×N2 × Jr denoted by Zr

uref and Zr
z , respectively.
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Fig. 2. The flow chart of the proposed complex domain algorithms

2. 3D HOSVD. The arrays Zr
uref and Zr

z are used dif-
ferently. The HOSVD analysis is produced for the reference
arrays

Zr
uref = Suref

r ×1 T
ref
1,r ×2 T

ref
2,r ×3 T

ref
3,r , (4)

giving the core tensor Suref

r (reference spectrum) and the
transforms Tref

1,r , Tref
2,r and Tref

3,r .
Further these transform are applied for the analysis of Zr

z

with the corresponding core spectrum Sz
r calculated as

Sz
r = Zr

z ×1 (T
ref
1,r )

T ×2 (T
ref
2,r )

T ×3 (T
ref
3,r )

T . (5)

3. Empirical Wiener filtering replaces the thresholdings
and gives the filtered version of the core spectrum Sz

r in the
form

Ŝz
r =
|Suref

r |2 · Sz
r

|Suref

r |2 + β
, (6)

where all operations with the tensors are element-wise and
β > 0 is the regularization parameter.

4. Inverse 3D HOSVD. The filtered group according to (4)
in the image domain is calculated as

Ûr
z = Ŝz

r ×1 T
ref
1,r ×2 T

ref
2,r ×3 T

ref
3,r . (7)

5. Aggregation is produced with the weights gr calculated
as gr = 1/||Ŝz

r ||22.
Here and in what follows the norm ||·||22 is calculated as the

sum of the squared absolute values of all items of the array-
argument. The flow chart of this algroithm can be seen in the
right part of Fig.2.

B. REAL DOMAIN SPARSITY (Type II and Type III)

In this group of the algorithms the HOSVD based spectrum
analysis and transform design are applied to real-valued vari-
ables. As it is discussed in Introduction the complex variable
sparsity can be thought as the sparsity of the correspond-
ing real-valued variables: phase/amplitude and real/imaginary
parts (sparsity Types II and III).

Accordingly, we developed two types of the algorithms.
The essential difference with the algorithms presented above
concerns HOSVD which is applied to 4D groups instead of 3D
groups. This higher dimension allows to design the spectra and
transforms which take into consideration correlation between

phase and amplitude and real and imaginary parts of the input
data. All other steps of the algorithms are exactly as they
are in Sections II-A1 and II-A2 for thresholding and Wiener
filtering. For the novel algorithms obtained in this way we
will use a specific notations: ImRe-BM3D and PhAm-BM3D,
where ImRe and PhAm indicate what variables are used for
transforms and spectrum analysis.

Overall we obtain four different algorithms to be compared
in this paper: CD-BM3D with two thresholding schemes
(thresholding of the absolute values or real/imaginary parts
of spectra) and ImRe-BM3D and PhAm-BM3D. For all these
algorithms the corresponding Wiener filters are developed.

III. RESULTS

The developed algorithms are tested by analyzing the accu-
racy of the phase reconstruction for various phase and ampli-
tude test images. For the interferometric phase the accuracy is
measured by the peak signal-to-noise ratio (PSNR):

PSNRϕ = 10 log10
n(2π)2

||W(ϕ̂o − ϕo)||22
[dB], (8)

where ϕ̂o and ϕo are the phase reconstruction and the true
phase, respectively; n is the image size; the phase wrapping
operator W is used in order to eliminate the phase shifts in
errors multiple to 2π. The factor (2π)2 in the nominator of
(8) stays for the squared maximum value of the interferometric
phase. Being concentrated on the phase reconstruction in our
experiments we control the noise level in the observed phase
for any kind of amplitude variable ao(x). The experiments
are produced for varying standrad deviation of this noise
σϕz= {0.05, 0.1, 0.2, 0.5, 0.9}. The largest value of σϕz cor-
responds to the very noisy case.

The all results shown in what follows are done for the
thresholding algorithms complemented by the Wiener filtering.

For comparison we show also results obtained by the
standard BM3D applied independently to real and imaginary
parts of z . The abbreviation BM3D for is used for this
application of the standard BM3D filter to complex-valued
data.

It is of special interest to compare this straightforward
application of BM3D to complex-valued data with ImRe-
BM3D, where the data adaptive basis is generated by 4D
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HOSV D and correlation between the real and imaginary
parts of observations are taken into considerations. It is shown
that the proposed algorithms and in particular ImRe-BM3D
significantly overperform BM3D.

A. Phase test-images
The test phase images ϕo(x) of the size 256 × 256 are

shown in Fig.3. The images lena (a) and cameraman (b) are
interferometric phases normalized to the interval [0, π/2]. The
absolute phase corresponding to the images (c) and (d) is
the truncated Gaussian distribution with the maximum value
equal to 44 radians and zeroed one of the quadrants, what
makes this absolute phase discontinuous and more difficult
for reconstruction. In image (c) we show the wrapped version
of this phase and the absolute phase shown as a 3D surface
in image (d).

The ”mountains” images (e)-(f) are shown as wrapped and
3D absolute phase which is smooth with multiple picks. The
range of this phase variations is from -5 to 3.3 radians.

The absolute phase for images (g)-(h) is the sum of the
lena phase from image (a) and the quadratic phase with the
maximum value 26 radians. In image (g) the lena features are
destructed by the fringes of the quadratic phase. In the absolute
phase image (h) the lena is nearly invisible due to the larger
magnitude of the quadratic phase.

Note that our algorithms deals with wrapped phase variables
as they shown in the images (c, e, g) and the absolute phase
reconstruction can be obtained by unwrapping the estimate of
the corresponding wrapped phase. Closed fringes typical for
the wrapped phase are well seen in the images (c, e, g) make
the problem of the phase restoration very hard. In order to
make a difference between the test images (a,b) and (c)-(f)
we will refer the former as an interferometric phase and the
latter as a wrapped phase.

B. Amplitude test images
As it is illustrated in Fig.1 typically, e.g. in holography,

phase and amplitude images can be quite correlated. For
amplitude test images 256 × 256 we selected invariant and
varying functions of different link with the test phase images
imitating a dependence between the phase and amplitude
appeared in real data, in particular, shown in Fig.1.

C. Complex-valued test images
Combining the introduced phase and amplitude test images

we generate a large set of different complex-valued uo(x). As
a result of our preliminary study we selected 20 representative
complex-valued models. The first 12 models are used with
wrapped phases and the others (13–20) - with interferometric
phases. The algorithms are tested for all these 20 complex-
valued images and for various σϕz

.
As an example of our tests we show diagrams in Fig.4

allowing to compare the algorithms for quite noisy data with
σϕz

= 0.2. For the wrapped phase test images 1÷ 12 the best
results are shown mainly by CD-BM3D, while for other tests
with the interferometric phase ImRe-BM3D continues to show
better accuracy than CD-BM3D.

The average gap between ImRe-BM3D and BM3D in-
creases from 0.6 dB to 1.9 dB as compared with the case
σϕz

= 0.05. To illustrate how significant is this 1.9 dB
benefit we show the noisy test image 19 and the results for
phase reconstruction obtained by ImRe-BM3D, CD-BM3D
and BM3D (see 5).

D. Conclusions

For implementation and algorithm design we use the
nonlocal block-matching with structural sparsity developed
for 3D/4D tensors obtained by grouping similar patches of
complex-valued data. This approach results in the follow-
ing novel algorithms: CD-BM3D, ImRe-BM3D and PhAm-
BM3D, where CD-BM3D uses 3D HOSVD dealing with
complex-valued variables directly, while ImRe-BM3D and
PhAm-BM3D use 4D HOSVD, respectively, dealing with the
pairs phase/ amplitude and real/imaginary parts of complex
valued HOSVD spectra. The algorithms are developed in two
versions: hard-thresholding and Wiener filtering.

Overall conclusions on comparison are as follows. The
Wiener filtering gives improvement in PSNRϕ about 0.2÷0.3
dB with respect to the hard-thresholding algorithms. The best
accuracy is achieved by two competitive algorithms: CD-
BM3D and ImRe-BM3D.

Comparison versus the standard real domain BM3D algo-
rithm applied separately to real and imaginary parts of the
complex-valued data is definitely in favor of CD-BM3D and
ImRe-BM3D with an PSNRϕ improvement of about 1÷2 dB.
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