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Abstract—Brain functional connectivity measured by func-
tional magnetic resonance imaging was shown to be influenced
by preprocessing procedures. We aim to describe this influence
separately for different preprocessing factors and in 20 differ-
ent most used preprocessing pipelines. We evaluate the effects
of slice-timing correction and physiological noise filtering by
RETROICOR, diverse levels of motion correction, and white
matter, cerebrospinal fluid, and global signal filtering. With usage
of three datasets, we show the impact on global metrics of resting-
state functional brain networks and their reliability. We show
negative effect of RETROICOR on reliability of metrics and
disrupting effect of global signal regression on network topology.
We do not support the use of slice-timing correction because it
does not significantly influence any of the measured features.
We also show that the selected types of preprocessing may
affect averaged node strength, normalized clustering coefficient,
normalized characteristic path length and modularity.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides
unique possibilities to study brain activity at rest and during
a task at reasonably good spatial and temporal scales when
compared to other modalities for functional brain imaging. Sta-
tistical dependence between diverse brain regions is referred to
as a functional connectivity. It has been shown that functional
connectivity at rest is strongly influenced by disease [1], [2]
or cognitive state [3].

The functional connectivity pattern in brain can be seen as a
network composed of nodes—regions of interest (ROIs)—and
edges, i.e., connections between pairs of nodes representing
statistical relationship (e.g. similarity between time series of
measured signals) [1]. The network topology and importance
of nodes within network can be quantified by metrics (also
called measures) such as characteristic path length or clus-
tering coefficient. A reproducibility of network metrics was
studied in [4], workflow for brain functional connectivity
analysis is proposed in [5]. The comparisons of networks of
different sizes [6] and analytical approaches [7], together with
recommendations of how to treat negative correlations [8] and
how to threshold the results [9], form a background for brain
connectivity analyses.

However, one has to deal with a complex preprocessing
procedure prior to the actual data analysis. Many preprocessing

Fig. 1. Schema of 20 evaluated variants of preprocessing pipelines.

methods have been proposed in the last years targeting relia-
bility in individuals [10], [11], temporal filtering at frequency
bands [11], slice-timing correction (STC) [12], motion arti-
facts [13], [14], physiological noise correction—cardiac and
respiratory-cycle effects [15], [16]—or specifics like global
signal filtering [3], cerebrospinal fluid (CSF) and white matter
(WM) regression [3]. These studies, however, mostly target
only a specific effect of preprocessing of the data. Follow-up
studies such as [17], [18], [19], [20], [21] evaluated specific
preprocessing steps and their impact of diverse features of
functional connectivity.

We aim to quantify a complex influence of preprocessing
pipeline on two aspects of functional connectivity – its topol-
ogy and reliability in time. Therefore, we examine different
preprocessing pipelines covering usage of STC, RETROICOR
[15] for cardiac and breathing filtering, high pass filtering,
movement correction, WM, CSF and global signal (GS)
filtering. Our study is inspired by the consensual pipeline
for structural brain networks evaluating different parcellation
atlases [22] and is a direct extension to [20], [18], [21].

II. METHODS

A. Data preprocessing

The fMRI data was preprocessed using SPM8 [23]. The
whole pipeline with variants evaluated in this study is il-
lustrated in Fig. 1. The first step consisted of realignment
and unwarp, optional high pass filtering with cutoff at 128 s,
optional RETROICOR correction (RTC), optional slice-timing
correction (STC)—the middle slice was chosen as the refer-
ential one, co-registration of the structural scan to the mean
functional image, spatial normalization (with segmentation)
of the structural scan to the Montreal Neurological Institute
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template, spatial normalization and spatial smoothing of the
functional data, Gaussian kernel of FWHM = 8 mm.

Second step of preprocessing is the noise suppression. We
filter the data by regression approach with general linear
model Y = X ∗ b + e, where Y is BOLD signal time-series
from preprocessed data, X is design matrix containing models
of noise as individual regressors, b stands for parameters
describing linear combination of regressors, and e stands for
residual time-series, that is the BOLD signal time-series after
filtering (after the effects of noise are removed from the
data). We evaluated separate effects of 4 preprocessing factors,
all possible combinations of these factors and their variants
(creating 48 distinct preprocessing pipelines), from which we
picked and analyzed in more detail 5 different settings of X , as
denoted in scheme in Fig.1, that are the most frequent combi-
nations of preprocessing steps used for subsequent functional
connectivity analyses. The preprocessing factors are:

high pass filtering (hpf):
– no
– cutoff 128 s,

movement regression:
– no
– 6MR (6 movement regressors (MR; 3 translations
and 3 rotations) estimated during realign proce-
dure in SPM8),
– 24MR (extended set of 24 MR (3 translations,
3 rotations, their time-differences and all of them
squared) [13]),

WM and CFS regression (NV):
– no
– only CSF (6 CSF signals)
– only WM (4 WM signals)
– CSF + WM (6 CSF, 4 WM signals),

global signal regression:
– no
– global signal calculated using SPM8 (function
spm_global).

B. Functional connectivity

Functional connectivity for every measurement in our
datasets was assessed between each pair of specific brain
regions. We used Automated Anatomical Labeling (AAL) atlas
for parcellation of brain into specific regions [24]. 80 AAL
regions fulfilled the criterion of minimal coverage of valid
data (50%, voxelwise) among all subjects and thus were used
for subsequent analysis. First principal component was used
as a representative signal from all valid voxels in particular
AAL region [18] resulting in 80 representative time-series for
each subject corresponding to the selected 80 AAL regions.
These time-series were detrended (removing mean and linear
drift) and were used for calculation of Pearson’s correlation
coefficients yielding 80x80 correlation matrix. Further, the
Fisher’s Z-transformation was applied to the matrix.

This procedure was repeated for all filtering combinations
resulting in 48 correlation matrices for each of 4 combinations
of correction (RTC, STC, RTC+STC, simple proc.) for each

subject. Moreover, we calculated correlation matrices for the
first half of BOLD signal time-series and for the second half,
to be able to estimate a split-half reliability.

C. Measures of functional connectivity

The effects on network topology (networks defined by
correlation matrices) were analyzed using global level network
analytical measures – normalized clustering coefficient, nor-
malized characteristic path length, modularity, and averaged
node strength. The Brain Connectivity Toolbox was used [25]
and normalization was assured by values computed for 100
null models. The metrics were assessed for weighted networks.

Network measures were further computed for networks of
the first and second halves of the AAL ROI time-series. The
split-half reliability was computed on network level as an intra-
class correlation coefficient (ICC) [26]. This metric was used
in previous resting-state fMRI studies [10], [11].

Generalized linear mixed model implemented in the SPSS
Statistics software was used to quantify the impact of prepro-
cessing pipelines on studied measures, using a significance
threshold p < 0.05. The model included two factors—
correction and filtering—and their interference. Follow-up
post-hoc tests of individual differences were interpreted on
p < 0.05 with Bonferroni correction for multiple comparisons.

III. DATA AND RESULTS

A. Subjects and data acquisition

Three datasets were acquired for this study: Null300, Nul-
lVob, Prisma. None of the subjects scanned to perform this
study reported any previous neurological or psychiatric disor-
ders. All subjects have given their written informed consent
and the study was approved by the local ethics board. The
datasets specifications are following:

Null300: 1.5 T Siemens Symphony scanner, resting state
fMRI, 15 minutes, time of scan repetition (TR) = 3 s,
300 scans; voxel size 3.45x3.45x3.5 mm, 52 subjects,

NullVob: 1.5 T Siemens Symphony scanner, resting state
fMRI, 7 minutes, TR = 1.66 s, 256 scans; voxel size
3.9x3.9x6 mm, 52 subjects (the same subjects as in
the Null300 dataset),

Prisma: 3T Siemens Prisma scanner, resting state fMRI,
15 minutes, TR = 0.65 s, 1370 scans, voxel size
3x3x3 mm; 19 subjects (completely different set of
subjects than in the previous datasets).

Further, high-resolution anatomical T1-weighted images
were acquired using the MP-RAGE sequence. The ECG and
respiration signal data were recorded simultaneously during
functional measurement using the MR compatible EEG/ExG
system (Brain Products, Germany) with a 5 kHz sampling rate
and a resolution of 10µV.

B. Results

In weighted networks, considering separate effects of factors
on network measures, we observed an extreme influence of
global signal regression on all studied metrics. The high pass
filtering also caused statistically significant changes in all
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TABLE I
SEPARATE EFFECTS OF PREPROCESSING FACTORS ON NETWORK PROPERTIES. MEANS AND STANDARD ERRORS ARE SHOWN.

dataset: Null300 NullVob Prisma
metric: normalized clustering coefficient

hpf no 1.260 (0.075)
p < 0.001

1.273 (0.078)
p < 0.05

1.224 (1.800)
p < 0.001yes 1.272 (0.075) 1.269 (0.078) 1.272 (1.800)

MR
no 1.260 (0.075) p(noMR, 6MR) < 0.001

p(noMR, 24MR) < 0.001

p(6MR, 24MR) > 0.05

1.270 (0.078)
p > 0.05

1.239 (1.800)
p > 0.056MR 1.268 (0.075) 1.274 (0.078) 1.253 (1.800)

24MR 1.268 (0.075) 1.270 (0.078) 1.252 (1.800)

NV

no 1.266 (0.075)

p > 0.05

1.263 (0.078) p(no,CSF ) < 0.001
p(CSF,WM) < 0.001
p(no,CSF |WM) < 0.001
p(no,WM) < 0.05
p(CSF,CSF |WM) > 0.05

1.252 (1.800)

p > 0.05CSF 1.264 (0.075) 1.278 (0.078) 1.249 (1.800)
WM 1.268 (0.075) 1.266 (0.078) 1.245 (1.800)

CSF+WM 1.266 (0.075) 1.279 (0.078) 1.246 (1.800)

GS no 1.039 (0.075)
p < 0.001

1.035 (0.078)
p < 0.001

1.028 (1.800)
p < 0.001yes 1.493 (0.075) 1.508 (0.078) 1.468 (1.800)

normalized characteristic path length

hpf no 1.316 (0.061)
p < 0.001

1.319 (0.503)
p < 0.001

1.350 (0.113)
p < 0.001yes 1.330 (0.061) 1.314 (0.503) 1.380 (0.113)

MR
no 1.319 (0.061) p(noMR, 6MR) < 0.001

p(noMR, 24MR) < 0.05
p(6MR, 24MR) < 0.001

1.319 (0.503) p(noMR, 6MR) > 0.05
p(noMR, 24MR) < 0.001
p(6MR, 24MR) < 0.001

1.356 (0.113)
p > 0.056MR 1.327 (0.061) 1.321 (0.503) 1.368 (0.113)

24MR 1.322 (0.061) 1.310 (0.503) 1.370 (0.113)

NV

no 1.314 (0.061) p(no,CSF ) < 0.001
p(no,WM) < 0.001
p(no,CSF |WM) < 0.001
p(CSF,WM) < 0.001
p(WM,CSF |WM) < 0.001
p(CSF,CSF |WM) > 0.05

1.302 (0.503)

p < 0.001

1.363 (0.113)

p > 0.05CSF 1.327 (0.061) 1.323 (0.503) 1.365 (0.113)

WM 1.320 (0.061) 1.313 (0.503) 1.362 (0.113)

CSF+WM 1.329 (0.061) 1.330 (0.503) 1.368 (0.113)

GS yes 1.174 (0.061)
p < 0.001

1.141 (0.503)
p < 0.001

1.173 (0.113)
p < 0.001no 1.471 (0.061) 1.493 (0.503) 1.556 (0.113)

averaged node strength

hpf no 21.806 (4.717)
p < 0.001

22.662 (4.960)
p < 0.001

26.112 (5.064)
p < 0.001yes 19.929 (4.717) 22.272 (4.960) 24.190 (5.064)

MR
no 21.709 (4.718)

p < 0.001
23.363 (4.961)

p < 0.001
27.392 (5.066)

p < 0.0016MR 20.953 (4.718) 22.412 (4.961) 24.442 (5.066)
24MR 19.939 (4.718) 21.624 (4.961) 23.619 (5.066)

NV

no 23.151 (4.718)

p < 0.001

25.314 (4.961)

p < 0.001

26.772 (5.068) p(no,CSF ) < 0.001
p(no,WM) < 0.001
p(no,CSF |WM) < 0.001
p(WM,CSF |WM) < 0.001
p(CSF,WM) < 0.05
p(CSF,CSF |WM) < 0.05

CSF 19.953 (4.718) 20.880 (4.961) 24.511 (5.068)

WM 21.391 (4.718) 23.672 (4.961) 25.609 (5.068)

CSF+WM 18.973 (4.718) 20.000 (4.961) 23.712 (5.068)

GS no 34.561 (4.717)
p < 0.001

37.756 (4.960)
p < 0.001

42.444 (5.064)
p < 0.001yes 7.173 (4.717) 7.177 (4.960) 7.858 (5.064)

modularity coefficient

hpf no 0.248 (0.388)
p < 0.001

0.249 (0.032)
p < 0.05

0.226 (0.008)
p < 0.001yes 0.259 (0.388) 0.248 (0.032) 0.241 (0.008)

MR
no 0.249 (0.388) p(noMR, 6MR) < 0.001

p(noMR, 24MR) < 0.001

p(6MR, 24MR) < 0.05

0.247 (0.032) p(noMR, 6MR) < 0.001

p(noMR, 24MR) < 0.05

p(6MR, 24MR) > 0.05

0.227 (0.008) p(noMR, 6MR) < 0.001

p(noMR, 24MR) < 0.001

p(6MR, 24MR) > 0.05

6MR 0.255 (0.388) 0.250 (0.032) 0.237 (0.008)
24MR 0.257 (0.388) 0.249 (0.032) 0.237 (0.008)

NV

no 0.246 (0.388)

p < 0.001

0.237 (0.032)

p < 0.001

0.231 (0.008)

p > 0.05
CSF 0.256 (0.388) 0.255 (0.032) 0.235 (0.008)
WM 0.252 (0.388) 0.243 (0.032) 0.232 (0.008)

CSF+WM 0.261 (0.388) 0.259 (0.032) 0.236 (0.008)

GS no 0.131 (0.388)
p < 0.001

0.188 (0.032)
p < 0.001

0.090 (0.008)
p < 0.001yes 0.376 (0.388) 0.379 (0.032) 0.377 (0.008)

metrics, however, these changes are small (up till 10% in
averaged node strength and till 5% in higher order metrics).
Similar effect was caused by movement regression, especially
on averaged node strength (the more sophisticated movement
regression, the lower averaged node strength values). The
averaged node strength was also decreased by filtering of
WM, CSF (and GS). The white matter and cerebrospinal fluid
filtering increase normalized characteristic path length and
modularity coefficient (affected only minimally up till 10%
of a value with no filtering). This is even more pronounced
when correcting for global signal. The results for normalized
characteristic path length are in detail captured by Figure 2a.

These results were similar across all three datasets, although
in Prisma dataset the metrics are less influenced by preprocess-
ing factors. The details are captured by Table I.

The adaptation of RTC significantly increases averaged node

strength, especially in preprocessing combinations with less
sophisticated movement regression, as visualized in Fig. 2b.
This was found in all datasets. The metrics computed on
Null300 dataset are overall more influenced by RTC than other
dataset, we also measured decreased normalized characteristic
path length and modularity (Fig. 2c) in this dataset.

The STC was not applied in the Prisma dataset because of
short TR. In this dataset, we measured increased variance of
characteristic path length values in RTC variant.

We found no consistent effect of slice-timing correction on
studied features. The effects became significant only when
combined with RTC.

Considering reliability computed by ICC, we observed
worse results when adapting RTC across all metrics and
datasets (for illustration see Fig. 3a). Slice-timing correction
and high pass filtering slightly improve reliability of char-
acteristic path length and modularity (Fig. 3b). As well as
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Fig. 2. Effect of a) global signal regression on normalized characteristic
path length (Null300 dataset), RTC and STC on b) averaged node strength
(NullVob dataset), c) modularity coefficient (Null300 dataset) of the most
typical filtering combinations.

in differences in global metrics values between preprocessing
pipelines, the global signal regression influences, specifically
increases, the reliability of all studied metrics across all
datasets. This effect is shown in Fig. 3c.

IV. DISCUSSION AND CONCLUSIONS

The evaluation of effects of preprocessing pipelines on net-
work structure revealed significant shift towards more regular
network structure (higher normalized clustering coefficient and
normalized characteristic path length) with more prominent
modular structure (increased modularity coefficient) when
filtering WM, CSF (and GS) signals and when regressing out
the movement. This was observed in Null300 and NullVob
datasets. The Prisma dataset seems to give more stable results
suggesting the network topology is less influenced by prepro-
cessing. The filtering also caused decreases in averaged node
strength in all datasets which can be interpreted as decreases
in connectivity.

We want to emphasize extreme effect of global signal
regression on all metrics across all datasets—drastic decreases
of connectivity combined with increases of clustering and path
length lead to more regular network with low connectivity
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Fig. 3. Effect of a) RTC and STC on reliability of averaged node strength of
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strength. We observed the GS influence in all datasets. Partially
overlapping conclusions were drawn in [18], however, other
metrics were studied in this paper.

High pass filtering was also found to affect network topol-
ogy and connectivity strength, but even though its influence
is statistically significant, the changes in metrics values are
lacking practical significance. However, care has to be taken
in meta-analyses where these slight differences can lead to
diverse trends.

The normalized characteristic path length was also influ-
enced by RTC and interactive effect of RTC / RTC+STC
and filtration—lower values when using RETROICOR. The
same trends—higher level of filtering and use of RETROICOR
increase values of a metric—were present in modularity coef-
ficient describing the ability of network to form functionally
similar clusters. Taking averaged node strength into account,
the significant effects of RTC and filtering steps as well as their
combinations were measured. Specifically, the more filtering
steps included, the lower the values, as concluded also by [18],
while RETROICOR kept values higher. These findings relate
to Null300 dataset. In other studied datasets the RTC has effect
only on averaged node strength of networks with low level of
additional filtering.
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As to describe the differences between networks constructed
from the first and second halves of time-series, we computed
intra-class correlation coefficient and found impact of RTC
on all studied metrics consistently across datasets. We argue
that lower ICC values of metrics with preprocessing including
RETROICOR could be caused by time-series dynamics getting
more pronounced by breathing and cardiac artifacts correction.

Slice-timing correction and high pass filtering slightly in-
crease reliability of modularity coefficient and normalized
characteristic path length. As on the level of network metrics
values, the global signal regression influences the reliability
of studied metrics. We believe the increased reliability when
correcting for GS is caused by disturbed network topology
and compromised neural characteristics of the time-series that
underly studied networks.

To conclude, we observed negative effect of RETROICOR
on split-half reliability, however, future studies have to be
conducted to explain the origin of this effect. We did not
find convincing evidence for using slice-timing correction. In
agreement with previous studies [18], [19], [20], [21] and
following our results, we suggest to not use the filtering of
global signal in the stage of data preprocessing. To further
investigate the impact of preprocessing pipeline on functional
connectivity, we will test the features for group discriminabil-
ity, which is crucial when evaluating potential markers of a
disease. Our results further alert to careful choice of studies
entering meta-analyses since seemingly miniscule differences
in preprocessing pipelines can lead to very different results.
Similar diversity of results based on processing pipeline was
reported by [17] for analysis of task-related fMRI data. We
strongly recommend especially to not combine studies with
different approaches concerning global signal filtering. The
same applies to complex studies where network analysis is
one of the studied aspects.
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