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Abstract—The Ideal Ratio Mask (IRM) has proven to be very
effective tool in many applications such as speech segregation,
speech enhancement for hearing aid design and noise robust
speech recognition tasks. The IRM provides information regard-
ing the amount of signal power at each Time-Frequency (T-
F) unit in a given signal-plus-noise mixture. In this paper, we
propose to use the IRM for non-intrusive quality assessment of
noise suppressed speech. Since the quality of noise suppressed
speech is dependent on the residual noise present in speech,
IRM can be extremely useful for its quality assessment. The
quality assessment problem is posed as a regression problem
and the mapping between statistics of acoustic features, namely,
Mel Filterbank Energies (FBEs) plus IRM features and the
subjective score of the corresponding utterances was found using
single-layer Artificial Neural Network (ANN). The results of
our experiments suggest that by using the mean of FBEs and
IRM features as the input, the quality prediction accuracy was
significantly increased.

I. INTRODUCTION

Non-intrusive quality assessment of speech is the problem
of evaluating the perceptual quality of speech in the absence
of any reference signal. There are many practical scenarios
such as wireless communication, and Voice over IP (VoIP)
in which the clean speech is not available as a reference.
The absence of a reference signal makes the quality assess-
ment a challenging problem. An early attempt towards non-
intrusive assessment of speech based on spectrogram analysis
is presented in [1]. The study reported in [2] uses Gaussian
Mixture Models (GMMs) to create artificial reference models
to compare degraded speech signals whereas in [3], speech
quality is predicted by Bayesian inference and minimum mean
square estimation (MMSE) based on trained GMMs. In [4],
a speech quality assessment algorithm based on a temporal
envelope representation of speech is presented. Different fea-
tures extracted from speech have been detected to be useful
for speech quality assessment. Spectral dynamics, spectral
flatness, spectral centroid, spectral variance, fundamental fre-
quency or pitch (F0) excitation variance and perceptual linear
prediction (PLP) coefficients were used for quality prediction
in [5], [6]. In [7] and [8], the quality assessment problem
is posed as a regression problem and the mapping between
acoustic features and the subjective score was found using
Mel Frequency Cepstral Coefficients (MFCCs) and filterbank
energies, respectively. To find the mapping, Support Vector
Regression (SVR) was used. Bag-of-Words (BoW) inspired
codebook approach was presented in [9]. Spectro-temporal

features and several combinations of auditory features were
used for the same task in [10] and [11], respectively. Currently,
ITU-T P.563 is the standard metric for non-intrusive quality
assessment [12].

In this paper, we propose to use information of a Time-
Frequency (T-F) mask for non-intrusive quality assessment. An
ideal T-F mask gives information about whether, or to what
extent, each T-F unit is dominated by target speech, which is
the clean speech in this work. A binary decision about target
dominant regions is represented using an Ideal Binary Mask
(IBM) [13]. On the other hand, the decision about the ratio of
target dominant power to mixture power is represented using
an Ideal Ratio Mask (IRM) [14], [15]. We propose to use
IRM for quality assessment task since it leads to better speech
quality without compromising speech intelligibility [15]. Since
IRM contains the information regarding the relative presence
of residual noise in enhanced or noise suppressed speech, it
provides a useful clue about the quality of a given utterance.
The features extracted from IRM are used in addition to the
standard acoustic feature set, namely, Mel Filterbank Energies
(FBEs) to train a regression model and thus, the problem is
posed as a regression problem [7], [8], [16]. The statistics of
FBEs and IRM features are used as an input to the regression
model. The model is trained to predict the subjective score
of the given input pattern. Once trained, the model can be
used to predict the quality of unknown test utterances. In the
first part of our experiments, we show the effectiveness of
IRM for the stated problem using true IRM extracted using
clean speech signals. After establishing the effectiveness of the
true IRM, we predict it directly from noise suppressed speech
signal and use predicted IRM for the quality assessment task.
Different experiments were conducted to check the robustness
of proposed approach by dividing the data into different
training and testing sets.

II. IDEAL RATIO MASK (IRM) FOR QUALITY
ASSESSMENT

A. IRM features

The IRM is widely used in speech segregation, speech
enhancement and noise robust ASR [13], [15], [17], [18]. The
IRM is defined as follows:

IRM(t, f) =

(
S2(t, f)

S2(t, f) +N2(t, f)

)β
, (1)
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Fig. 1. Block diagram of proposed quality assessment system.

where S2(t, f) and N2(t, f) denote the speech and noise
energy at a particular T-F point, respectively. β is a tunable
parameter to scale the mask. We have used β = 0.5 [18]. With
β = 0.5, equation 1 becomes similar to the square root Wiener
filter, which is the optimal estimator of the power spectrum
[15]. The IRM gives information about signal-to-noise ratio
(SNR) at each T-F point which can be used to predict the
quality of the utterance. IRM is applied on time-frequency (T-
F) representation of noisy speech for different applications.
In this paper, we have used IRM information for quality
prediction along with spectral features extracted from noisy
speech. Fast Fourier Transform (FFT) power spectrum and
Gammatone power spectrum are used as the T-F representation
of the speech signal and IRM is calculated from these T-
F representations. The masks extracted using FFT power
spectrum and Gammatone power spectrum are referred to as
FFT-IRM and gammatone-IRM, respectively.

To use the IRM for quality prediction, low-dimensional fea-
tures must be extracted from IRM which can provide effective
representation. In this paper, recently proposed subband au-
toencoder (SBAE) [16], [19] is used for feature extraction from
IRM. SBAE has been successfully used to learn the effective
representation of speech spectrum for the non-intrusive speech
quality assessment task [16] and for spoofed speech detection
task [19]. In SBAE, the units of the first hidden layer are
connected in a restricted manner with the units of the input
layer. The restricted connectivity forces the units in the first
hidden layer to learn the representation of one subband of
the input spectrum. Hence, the first hidden layer is known as
subband layer. More details about the architecture of SBAE
and its advantages over AE can be found in [16], [19]. In
presented work, SBAE is trained to learn 20-D (dimensional)
subband features from both FFT-IRM and gammatone-IRM.

B. Proposed quality assessment system

Fig. 1 shows the block diagram of the proposed non-
intrusive quality assessment system. First of all, T-F represen-
tation is derived from noisy/enhanced speech signal. Acoustic
features are then extracted from this T-F representation. As it
can be observed from eq. (1) that IRM only consists local SNR
information and not acoustic information of the underlying
speech signal. Hence, some acoustic features must be used in
order to capture the perceptual content of the speech signal
under consideration. In this context, 40-D Mel Filterbank
Energies (FBEs) are used as acoustic features [8]. Initially,
we extract the true IRM features to show their effectiveness
for quality assessment task using a T-F representation of
clean speech signal. The statistics of both FBEs and IRM
features are then used as an input to the regression model. The
subjective scores of training utterances are used while training
the regression model. We have used the mean of FBEs, which
is proven to perform better than using the variance of FBEs [8]
and mean and variance of the IRM features at a time. However,
in non-intrusive quality assessment, the clean speech signal is
not available. Hence, true IRM cannot be calculated directly.
In such case, IRM must be estimated or predicted using given
noisy utterance only. To predict or estimate the IRM from
given noisy or enhanced utterance, a Deep Neural Network
(DNN) with three hidden layers is used [17]. More information
about IRM prediction is given in Section III. Predicted IRM
features are then used in further experiments.

III. EXPERIMENTAL RESULTS

A. Experimental setup

All experiments were performed on NOIZEUS database
[20]. The database has speech files which were corrupted by
different kinds (and amount) of noise. It also had speech files
enhanced using different noise suppression algorithms. The
speech files were corrupted by four types of noise, namely,
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Fig. 2. (a) Cp, (b) Cs and (c) RMSE for 8-fold CV experiment using true
IRM features. Cp and Cs are shown with 95 % confidence interval.

babble, car, street and train with two SNR levels, namely,
5 dB and 10 dB. The noise suppression algorithms fall under
four different classes, namely, spectral subtraction, subspace,
statistical model-based, and Wiener filter-based algorithms.
A complete description of these algorithms can be found
in [20]. Subjective evaluation of the speech files was done
according to ITU-T Recommendation P.835 [21]. A single-
layer artificial neural network (ANN) having 350 units was
used as a regression model, as previously used in [16] and
[22], to find the mapping between the acoustic feature vector
and the corresponding subjective score. For reproducibility
and consistency, all networks were initialized with the same
random weights. Although a total of 1792 speech files was
available in the database, for comparison between objective
measure and subjective score, a usual way is to compare per-
condition MOS with the per-condition average objective score
[21]. The database included utterances enhanced by total 14
algorithms. Hence, 112 total conditions (= 14 algorithms ×
2 SNR levels × 4 noise types) were available in database
with per-condition MOS. Moreover, 240 total noisy utterances
(30 utterances × 4 types of noises × 2 SNR) available in
the database along with enhanced utterances. In order to test
the robustness of proposed approach, data was divided into
train and test dataset using different partitions. In the first
test, 8-fold cross-validation (CV) was used. To evaluate the
performance, 3 standard measures, namely, Root Mean Square
Error (RMSE), Pearson’s linear correlation coefficient (Cp)
and Spearman’s rank order coefficient (Cs) were used. We
also used 3rd order polynomial mapping suggested in [12] to
eliminate offset between subjective and objective scores.

B. Quality prediction using true IRM features

To establish the effectiveness of IRM for quality prediction
task, we used true IRM extracted using enhanced utterances
and corresponding clean utterances in our experiments. We

Fig. 3. (a) True IRM and (b) estimated IRM using trained DNN for an
utterance. SBAE features extracted from (c) true IRM and (d) estimated IRM.

used both FFT-IRM and gammatone-IRM mask for initial
experiments. To calculate the T-F representation, the speech
signals were divided into frames using 25 ms window with 50
% overlap. 20-D features were extracted using SBAE from true
FFT-IRM and gammatone-IRM. For feature extraction from
FFT-IRM, SBAE with Mel filterbank was used to incorporate
perceptual scale in processing. On the other hand, while
extracting features from gammatone-IRM, we used SBAE with
linear filterbank since the perceptual scale is incorporated
while using gammatone filterbank [23]. The architecture of
SBAE which was used to extract features from FFT-IRM was
513-20-256-513 which implies 513 units in input layer, 20
units in subband layer, etc. The architecture of SBAE used to
extract features from gammatone-IRM was 64-20-100-64. The
mean and variance of 20-D IRM features were used as mask
features along with 40-D FBEs. The SBAE was trained using
clean and noisy speech utterances only. Enhanced utterances
were not used to train the SBAE. More details regarding SBAE
training can be found in [16].

Fig. 2 shows results of 8-fold CV by using true IRM
features for quality prediction. As it can be seen from Fig.
2, adding mask information improves the overall performance
of quality prediction system. Both mean and variance of
true IRM features improve the performance of the system.
Moreover, it is worth noting that performance after using IRM
information from FFT mask and gammatone mask are almost
similar. Hence, we consider using gammatone-IRM for further
experiments due to its low dimensionality.

C. Prediction of IRM from noisy gammatone spectrum

To predict the IRM directly from a noisy speech signal,
a Deep Neural Network (DNN) with 3 hidden layers was
used. The input to the neural network was power (1/15)
compressed gammatone spectrum of noisy speech [18] with
5-frames context. 64-channel gammatone spectrum was con-
sidered for experiments. Hence, the input dimension to the
DNN was 64×5=320. 3-frames context of IRM was predicted
simultaneously. Hence, output of the DNN was 64×3=192-
dimensional IRM. The number of units in each hidden layer
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Fig. 5. (a) Cp, (b) Cs and (c) RMSE for test 1. (d) Cp, (e) Cs and (f) RMSE for test 2.
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Fig. 4. (a) Cp, (b) Cs and (c) RMSE for 8-fold CV experiment using
predicted IRM features.

was 1024. The units in hidden layer had rectified linear
unit (ReLU) activation, while units in the output layer had
sigmoid activation. Back-propagation algorithm with gradient
descent optimization was used to train the DNN. The DNN
was trained using IRMs of noisy speech utterances only.
Enhanced utterances were not used while training the DNN.
It implies that input of the DNN was a T-F representation of
noisy utterance while output of the DNN was IRM calculated
using the T-F representation of noisy as well as the clean
speech signal. While testing, the DNN trained on noisy speech
utterances was used to predict the IRM of enhanced speech
utterances.

D. Quality assessment using predicted IRM

Fig. 3 shows original and predicted gammatone-IRM using
the trained DNN. Fig. 3 also shows SBAE features extracted
from these IRMs. In this Section, predicted IRM is used for

non-intrusive quality assessment. The 8-fold CV experiment
was repeated using predicted IRM features. Fig. 4 shows
results of 8-fold CV using predicted IRM features. It is
interesting to note that the mean of predicted IRM features
gave better performance than the mean of true IRM features.
On the other hand, the variance of predicted IRM features gave
relatively worse performance than the variance of true IRM
features. We believe that reason of this lies in the nature of
predicted IRM. Fig. 3 shows that predicted IRM is a smoother
version of true IRM. This smoothness can be observed in both
time and frequency-axis. Hence, the variance of the predicted
IRM will not be accurate to the true IRM which leads to
performance degradation due to the variance of predicted IRM
features. Further detailed analysis of these results is required.

In both the cases, the performance improvement by adding
true or predicted IRM information is not statistically signifi-
cant, due to overlap in 95% confidence interval corresponding
to various features. However, the performance improvement is
significant when compared to ITU-T P.563 standard, which is
state-of-the-art non-intrusive speech quality assessment metric.
Hence, all the improvements should be considered over ITU-T
P.563 metric.

E. Robustness of IRM features

In 8-fold CV experiment, the testing conditions were similar
to the training conditions. To check the robustness of the
proposed approach, two additional tests were performed by
dividing utterances into training and testing data according to
different mismatched conditions. In test 1, utterances having
5 dB SNR were used in training, while utterances having
10 dB SNR were used for testing. In test 2, utterances with
street and train noise were used in training, while utterances
having babble and car noise were used for testing. Fig. 5
shows results of test 1 and test 2. As it can be observed
from Fig. 5, mean of predicted IRM features gives a consistent
improvement in overall performance for different training and
testing conditions, too. Improvement of the performance is
more significant in the results of test 2.
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IV. SUMMARY AND CONCLUSIONS

In this study, we proposed to use information captured by
IRM features along with standard FBEs for non-intrusive qual-
ity assessment of noise suppressed speech. First, we showed
that IRM information can be effective using true IRM and
then IRM was predicted from the speech plus noise mixture
using a DNN having 3-hidden layers. We observed that mean
of predicted IRM features gave slightly better performance
than the mean of true IRM features. Moreover, we showed
that proposed approach is also more robust for different
training and testing conditions. IRM features gave the robust
performance when noise types in training and testing datasets
are different. In future, we plan to study the effectiveness of
different IRM prediction techniques for the quality assessment
task.
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