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Abstract—Gesture recognition using a training set of lim-
ited size for a large vocabulary of gestures is a challenging
problem in computer vision. With few examples per gesture
class, researchers often employ state-of-the-art exemplar-based
methods such as Dynamic Time Warping (DTW). This paper
makes two contributions in the area of exemplar-based gesture
recognition. As an alternative to DTW, we first introduce the
Local Frame Match Distance (LFMD), a novel approach for
matching gestures inspired by a distance measure for strings,
namely Local Rank Distance (LRD). While LRD efficiently
approximates the non-alignment of character n-grams between
two strings, we employ LFMD to efficiently measure the non-
alignment of hand locations between two video sequences.
Second of all, we transform LFMD into a kernel and use it
in combination with Kernel Discriminant Analysis for sign
language recognition with exemplars. The empirical results in-
dicate that our method can generally yield better performance
than a state-of-the-art DTW approach on the challenging task
of American Sign Language recognition, while reducing the
computational time by 30%.

1. Introduction

Gesture and sign language recognition represent a chal-
lenging research area in computer vision. Popular proba-
bilistic methods such as Hidden Markov Models (HMM)
[1] and Conditional Random Fields (CRF) [2] require large
training sets to learn good probability distributions. This
requirement often limits the size of the set of gestures
(vocabulary) that can be recognized by such systems. When
a large vocabulary is desired, time constraints may force
researchers to restrict the size of the training set to only
a few examples per gesture class. As using few examples
per class prohibits the use of many statistical and machine
learning methods, researchers are often limited to exemplar-
based recognition and similarity measures. In such cases,
Dynamic Time Warping (DTW) [3] is frequently used on
hand location or other information to generate scores that
serve as a measure of similarity to training examples [4],
[5], [6], [7]. DTW has been improved with the use of a
well-designed feature vector that includes more than hand

positions to represent the state of a gesture at each point in
time [8].

In this paper, we propose an alternative solution to DTW,
inspired by a distance measure for strings, namely Local
Rank Distance (LRD) [9]. LRD has successfully been used
for a broad range of tasks from phylogenetic analysis [9] and
sequence alignment [10] to native language identification
[11], [12], [13] and Arabic dialect identification [14]. LRD
essentially measures the non-alignment (displacement) of
character n-grams between two strings. Previous results in-
dicate that LRD is more accurate [10] and can be computed
faster [12] than the edit distance [15]. Since both DTW
and edit distance are solved by dynamic programming, we
can obtain a more efficient algorithm by adapting LRD for
gesture recognition from video. Hence, we introduce the
Local Frame Match Distance (LFMD) algorithm to measure
the distance (or similarity) between two gestures. In order
to use LFMD for gesture recognition, we first transform
it into a kernel function using the squared RBF kernel
[16] and then we employ Kernel Discriminant Analysis
(KDA) [16] to train our gesture classifier. To the best of our
knowledge, KDA has never been used for exemplar-based
gesture recognition. We compare our gesture recognition
approach with a state-of-the-art approach based on DTW
on the American Sign Language Lexicon Video Dataset
(ASLLVD) [17]. The empirical results indicate that our
approach can yield better performance, while reducing the
computational time by 30%.

The paper is organized as follows. Related work on ges-
ture and sign language recognition is presented in Section 2.
Our learning framework is described in Section 3. The sign
language recognition experiments are presented in Section 4.
Finally, we draw our conclusions in Section 5.

2. Related Work
Most recent works have been in action and activity

recognition, some from static images [18], others from
video [19]. These works tend to focus on classifying small
vocabularies of general actions, rather than discriminating
between specific actions such as language signs. Some
action recognition works do test their methods on gesture
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data sets [20], [21], but the vocabularies are limited, and
the methods are generally not directly applicable to larger
vocabulary gesture sets. A second area of research focuses
on generalized gesture recognition. The sets of gestures may
be created specifically for this task, and can be chosen so
as to minimize similarity between classes. Long Short Term
Memory (LSTM) networks have proven successful for this
task [22]. With the release of ChaLearn Gesture Challenge
data set [23], there have been a number of works in one-
shot learning, in which a single training example is used per
gesture class [24], [25], [26]. A third focus is on developing
methods that work on well-established gesture sets, such as
sign languages. One branch of work deals in continuous
sign language recognition and fingerspelling [27]. Another
branch of sign language recognition research focuses instead
on classification of individually segmented signs. One pop-
ular intuitive method is to segment a sign into motion or
other types of sub-units and then use an HMM to model the
temporal changes in sub-units throughout each sign [28],
[29]. Dynamic Time Warping has also been used for action
and gesture recognition [7], [8], [30], [31] and it has shown
its superiority over LSTM and HMM models [31]. Some of
these works approach the idea of class variability modeling
[30], [31].

3. Method
We propose a gesture and sign language recognition

system, given the hand trajectories of the gestures. We first
compute a feature matrix for each hand gesture, as described
in Section 3.1. Next, we compute the distance of two hand
gestures by employing our novel algorithm presented in
Section 3.2. Finally, we train a Kernel Discriminant Analysis
classifier to recognize new hand gestures based on a kernel
derived from the pairwise distances between gestures, as
detailed in Section 3.3.

3.1. Feature Representation of Hand Gestures

To represent a hand gesture, we use the feature vector
introduced in [8]. The feature vector based on 2D hand
position information is built for each video frame in order
to describe what is occurring at every point in time. The
hand positions are first expressed in a face-centric coordinate
system. For one-handed signs, the position of the non-
dominant hand is set to (0, 0), hence it will not contribute
to the similarity score. The following features compose the
vectors for each frame t of gesture video X:

• Ld(X, t) and Lnd(X, t): 2D pixel coordinates of the
dominant and non-dominant hands.

• Od(X, t) = Ld(X, t + 1) − Ld(X, t) and
Ond(X, t) = Lnd(X, t + 1) − Lnd(X, t): motion
direction from frame t to frame t+1 for the dominant
and non-dominant hands.

• Lδ(X, t) = Ld(X, t) − Lnd(X, t): position of the
dominant hand relative to the non-dominant hand.

• Oδ(X, t) = Lδ(X, t + 1) − Lδ(X, t): direction of
change for Lδ from frame t to frame t+ 1.

In total, there are 12 features in the vector representing
each video frame. The feature vectors are combined into
a single matrix to describe the sign. In the experiments,
we use manual annotations of the hand positions. The hand
gesture is size-normalized so that the diagonal of the face
bounding box is 1. Finally, the frame length is normalized to
24 frames using bicubic interpolation on the feature matrix,
as in [8]. Hence, the size of the feature matrix for a hand
gesture becomes 12× 24.

3.2. Local Frame Match Distance
In this section, we describe a novel algorithm for com-

puting the similarity (or the distance) between the hand tra-
jectories of two gestures. Our algorithm is inspired by LRD
[9] which has successfully been applied to phylogenetic
analysis [9], sequence alignment [10], native language iden-
tification [11], [12], [13] and Arabic dialect identification
[14], [32]. We next present how we adapt LRD and obtain
a novel algorithm, termed Local Frame Match Distance, for
the task of gesture recognition. Given the hand locations in
each video frame, we match each hand location from the
first video sequence to the nearest hand location (in terms
of the features derived from pixel coordinates) in the second
video sequence. Then, we compute the sum of the absolute
differences between the indexes of matched frames. As
LRD operates on character n-grams in order to yield better
performance, we can also extend the LFMD algorithm to
match sets of consecutive hand locations to achieve the same
goal. Local Frame Match Distance is formally presented in
Algorithm 1. We use the following notations for describing
the algorithm. An array (or an ordered set of elements) is
denoted by V = (v1, v2, ...., vn) and the length of V is
denoted by |V | = n. Arrays are considered to be indexed
starting from position 1, thus V [i] = vi,∀i ∈ {1, 2, ...n}.
We extend this notation to matrices as well, therefore we
consider that M [i, j] represents the element on row i and
column j of the matrix M .

The goal of Algorithm 1 is to compute a distance be-
tween two hand trajectories represented as features matrices
X and Y . As LRD obtains generally better results when
matching character n-grams instead of single characters, we
also want to match a set of consecutive frames in X with
another set of consecutive frames in Y by minimizing a cost
function. For the sake of simplicity, we will refer to a set of
consecutive frames Xi:i+p−1 = {Xi, Xi+1..., Xi+p−1} as a
p-frame, where p denotes the number of frames considered
in the set denoted by Xi:i+p−1. For individual frames Xi

and Yj , we employ the same cost function as in [8], but we
assign equal weights to all the features, therefore eliminating
the weights and the need to tune them on a validation set:

cost(Xi, Yj) = ‖Ld(X, i)− Ld(Y, j)‖2 +

+ ‖Lnd(X, i)− Lnd(Y, j)‖2 +

+ ‖Od(X, i)−Od(Y, j)‖2 +

+ ‖Ond(X, i)−Ond(Y, j)‖2 +

+ ‖Lδ(X, i)− Lδ(Y, j)‖2 +

+ ‖Oδ(X, i)−Oδ(Y, j)‖2 ,

(1)
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Algorithm 1: LFMD Algorithm
1 Input:
2 X , Y – the input feature matrices for two hand gestures;
3 n – the number of frames of the two hand gestures;
4 p – the number of consecutive frames to be matched;
5 m – the maximum spatial offset (m ≤ n);

6 Notations:
7 C – the (n− p + 1)× (n− p + 1) cost matrix of all possible

pairs of p-frames from X and Y ;
8 MX – the vector with minimal costs for each p-frame in X;
9 JX – the indexes of the p-frames in Y corresponding to the

minimal costs in MX ;
10 MY – the vector with minimal costs for each p-frame in Y ;
11 JY – the indexes of the p-frames in X corresponding to the

minimal costs in MY ;

12 Initialization:
13 MX ← (∞,∞, ....,∞), such that |MX | = n− p + 1;
14 MY ← (∞,∞, ....,∞), such that |MY | = n− p + 1;
15 JX ← (0, 0, ...., 0), such that |JX | = n− p + 1;
16 JY ← (0, 0, ...., 0), such that |JY | = n− p + 1;

17 Computation:
18 if p ≥ 2 then
19 for i ∈ {1, ...,min{m,n− p}} do
20 C[i + p− 2, p− 1]← cost(Xi+p−2, Yp−1);
21 C[p− 1, i + p− 2]← cost(Xp−1, Yi+p−2);
22 for j ∈ {p− 2, ..., 1} do
23 C[i+j−1, j]← cost(Xi+j−1, Yj)+C[i+j, j+1];
24 C[j, i+j−1]← cost(Xj , Yi+j−1)+C[j+1, i+j];

25 for i ∈ {1, ..., n− p + 1} do
26 for j ∈ {1, ..., n− p + 1} do
27 if |i− j| ≤ m then
28 C[i+ p− 1, j + p− 1]← cost(Xi+p−1, Yj+p−1);
29 for k ∈ {p− 2, ..., 0} do
30 C[i + k, j + k]←

C[i + k, j + k] + C[i + p− 1, j + p− 1];

31 if C[i, j] < MX [i] then
32 MX [i]← C[i, j];
33 JX [i]← j;

34 if C[i, j] < MY [j] then
35 MY [j]← C[i, j];
36 JY [j]← i;

37 ∆← 0;
38 for i ∈ {1, ..., n− p + 1} do
39 ∆← ∆ + MX [i] · |JX [i]− i|;
40 for j ∈ {1, ..., n− p + 1} do
41 ∆← ∆ + MY [j] · |JY [j]− j|;

42 Output:
43 ∆ - the Local Frame Match Distance between X and Y .

where ‖·‖2 represents the L2-norm. For p-frames Xi:i+p−1

and Yj:j+p−1, we naively consider the cost given by diago-
nally aligning the individual frames:

cost(Xi:i+p−1, Yj:j+p−1) = cost(Xi, Yj)+

+ cost(Xi+1, Yj+1) + ...+

+ cost(Xi+p−1, Yj+p−1).

(2)

In a similar way to DTW, we build a cost matrix C for
each pair of p-frames in X and Y . We first pre-compute
some of the components of the matrix C in steps 18-24 of
Algorithm 1. The rest of the components are computed in

steps 25-30. It is important to note that we compute only
those components for which the absolute difference between
their indexes is less than a parameter m (step 27). In the
experiments, we set m = 10 and thus obtain some speed
improvement compared to DTW. Right after the cost C[i, j]
between two p-frames Xi:i+p−1 and Yj:j+p−1 is computed,
we check if this cost is minimal on the row i (step 31)
or the column j of C (steps 34), in which case we store
the minimal value for future comparisons (steps 32 and
35, respectively) and the corresponding indexes (steps 33
and 36, respectively). We can now compute the distance
between X and Y by adding the minimal costs for each
row (steps 38-39) and each column (steps 40-41) of C. At
this point, we multiply the minimal cost with the offset
between the indexes of the matched p-frames (steps 39
and 41, respectively). While the minimal cost accounts for
the spatial difference between p-frames, the offset between
indexes accounts for the temporal difference between the
matched p-frames. Intuitively, a larger temporal difference
indicates that the hand trajectories are less similar, hence
the distance between them should be greater.

It is interesting to note that LRD measures the spatial
non-alignment of two strings as the sum of all the spatial
offsets between pairs of identical character n-grams in the
two strings. In our case, we consider pairs of p-frames, but
we do not want to match their spatial features exactly, as
two hand trajectories representing the same gesture class
are almost never the same, even if they are performed
by the same user. Instead of trying to find identical p-
frames, we match p-frames by minimizing the cost de-
fined in Equation (2). While LRD computes a spatial non-
alignment of identical character n-grams, LFMD measures
the temporal non-alignment of matching p-frames. In prac-
tice, LRD works better when n-grams of multiple lengths are
combined together [11], [12], [13], [14]. Algorithm 1 can be
easily extended to treat the case in which a blended range of
p-frames is used. The extension is based on the observation
that the cost between shorter p-frames is included in the cost
of longer p-frames. Indeed, we can trivially demonstrate this
by induction from p to p+ 1 using Equation (2):

cost(Xi:i+p, Yj:j+p) = cost(Xi:i+p−1, Yj:j+p−1)+

+ cost(Xi+p, Yj+p).
(3)

Moreover, we can perform the algorithm extension to a
blended range of p-frames, without increasing its time com-
plexity. However, the space required increases linearly with
the range of values considered for p. In the experiments, we
consider only 1-frames, 2-frames and 3-frames. Since p and
m can be considered as constants, the time complexity of
the proposed algorithm is essentially quadratic in terms of
the number of frames of the two gestures.

3.3. Kernel Learning Method

Kernel-based learning algorithms work by embedding
the data into a Hilbert feature space and by searching for
linear relations in that space. The embedding is performed
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TABLE 1. THE ACCURACY RATES OF DTW AND 1-NN VERSUS SEVERAL LFMD AND KDA MODELS BASED ON VARIOUS RANGES OF p-FRAMES.
THE METHODS ARE COMPARED USING A 3-FOLD CROSS-VALIDATION PROCEDURE. THE BEST RESULT FOR EACH k IS HIGHLIGHTED IN BOLD.

Top k DTW and 1-NN LFMD and KDA
1-frames 2-frames 3-frames {1, 2}-frames {1, 2, 3}-frames

1 34.38% 34.65% 35.21% 34.35% 35.65% 36.42%
5 60.77% 62.41% 63.13% 61.96% 63.40% 64.54%
10 71.88% 72.00% 72.12% 71.94% 73.20% 74.48%
20 80.11% 79.31% 80.08% 76.63% 81.04% 81.28%
30 84.16% 82.63% 84.07% 83.32% 84.22% 84.97%
50 88.41% 86.88% 88.08% 87.72% 88.62% 89.04%
100 93.41% 92.15% 92.99% 92.90% 93.14% 93.80%

implicitly, that is by specifying the inner product between
each pair of points rather than by giving their coordinates
explicitly. A kernel matrix that contains the pairwise sim-
ilarities between every pair of training samples is used in
the learning stage. As LFMD needs to be used as a kernel
function, we employ the RBF kernel [16] to transform
LFMD into a similarity measure:

k(X, Y ) = e
−

∆(X, Y )
2σ2

,

where ∆ is the Local Frame Match Distance between
gestures X and Y . The parameter σ is usually chosen such
that values of k(X,Y ) are well scaled. In this context, we set
σ = 0.3 in the experiments. The resulted similarity matrix is
then squared in order to make sure it becomes a symmetric
and positive definite kernel matrix.

After embedding the features with a kernel function,
a linear classifier is used to select the most discriminant
features. Various kernel classifiers differ in the way they
learn to separate the samples. There are some classifiers
that take the multi-class nature of the gesture recognition
problem directly into account, such as Kernel Discriminant
Analysis (KDA). The KDA method provides a projection
of the data points to a one-dimensional subspace where the
Bayes classification error is smallest. It is able to improve
accuracy by avoiding the class masking problem [33]. We
use KDA in our sign language recognition experiments. We
set the regularization parameter of KDA to 2, for increased
regularization (less overfitting). Further details about kernel
methods can be found in [16].

4. Experiments

4.1. Data Set

The sign language data set used in the experiments is
composed of 1113 distinct sign classes. For each sign class
there are three examples, each from a different user. In total,
there are 3339 examples. All sign videos and annotations
have been acquired from the ASLLVD [17].

4.2. Evaluation

We compare our approach based on LFMD and KDA
with a state-of-the-art approach based on DTW and k-
Nearest Neighbors (k-NN). We train and evaluate the sign

language recognition systems in a user-independent setting,
by using 3-fold cross-validation. In each fold, the users
performing the signs included the training set are different
from those performing the signs included the test set. To
assess the performance level of the considered systems, we
define the measure of accuracy to be the percentage of signs
whose correct match is ranked in the top k most similar signs
for each k ∈ {1, 5, 10, 20, 30, 50, 100}.

4.3. Results and Discussion

Table 1 shows the results of our system based on various
ranges of p-frames in comparison with a state-of-the-art
approach based on DTW and 1-Nearest Neighbors (1-NN).
When using 1-frames, 2-frames and 3-frames alone, the
LFMD and KDA approach does not achieve better results
than the DTW and 1-NN approach. It generally seems that
our approach can bring some performance improvements
over DTW when the accuracy is measured for the top 1 or
top 5 retrieved signs, but the performance of DTW is higher
for values of k larger than 20. Interestingly, we can obtain
better results for all k values when we combine p-frames.
Indeed, our best performance is obtained when we put 1-
frames, 2-frames and 3-frames together. Our performance
improvements over DTW are roughly 2.0% for k = 1, 3.8%
for k = 5, 3.4% for k = 10, 1.1% for k = 20, 0.8%
for k = 30, 0.6% for k = 50 and 0.5% for k = 100,
respectively. Interestingly, the empirical results presented in
[11], [12], [13], [14] also indicate that LRD obtains better
performance when using n-grams in a range. For example,
n-grams in the range 3-6 have been used for Arabic dialect
identification [14].

We also compare the LFMD and the DTW algorithms in
terms of time. Both algorithms are implemented in Java and
used in similar settings. We measure the time required by the
two algorithms to produce the 3339× 3339 distance matrix
for all the examples in the data set, on a computer with Intel
Core i7 2.3 GHz processor and 8 GB of RAM using a single
Core. The DTW algorithm takes about 3125 seconds, while
the LFMD algorithm takes about 2186 seconds to compute
the similarity based on {1, 2, 3}-frames. Thus, we obtain a
speed improvement of 30%.

5. Conclusion
In this paper, we have presented a novel approach for

sign and gesture recognition given the hand trajectories of
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the gestures. Our approach is based on comparing the hand
trajectories two by two using the novel Local Frame Match
Distance algorithm. We have used LFMD in a learning
context by transforming it into a kernel and by combining
it with the KDA classifier. To the best of our knowledge,
we are the first to use KDA for gesture recognition with
exemplars. Overall, the sign language results of LFMD are
better than the results of DTW, in terms of both accuracy
and time. Using automatically annotated hand positions is
beyond the scope of this paper, but we aim to use our
framework in this rather more realistic setting in future
work.
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