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Abstract—The vulnerability of automatic speaker verification
(ASV) systems against spoofing attacks is an important security
concern about the reliability of ASV technology. Recently, various
countermeasures have been developed for spoofing detection.
In this paper, we propose to use features derived from linear
prediction (LP) residual signal for spoofing detection using
simple Gaussian mixture model (GMM) classifier. Experiments
conducted on recently released ASVspoof 2015 database show
that LP residual phase cepstral coefficients (LPRPC) outperforms
standard MFCC features and considerably improves the spoofing
detection performance. With the LPRPC features 97% relative
improvement is observed over standard MFCC features on
known attacks.

I. INTRODUCTION

Automatic speaker verification (ASV) is the task of ac-
cepting or rejecting an identity claim given a speech signal
[1]. Recent developments on ASV technology which yields to
achieve low equal error rates (EER), has led to an increasing
potential use of ASV systems in real case scenarios such
as online banking and call centers thereby triggering the
adoption by the mass-market. However, as in the case for
other biometric modalities (e.g. face and fingerprint), spoofing
attacks are one of the most important security concern for
ASV systems [2], [3]. With spoofing attack (also known
as presentation attack), an attacker aims to gain illegitimate
access to the system by presenting a forged biometric data
at the sensor level (e.g. camera and microphone) [2] and the
vulnerability of ASV systems against spoofing attacks have
been confirmed independently in many studies [4], [5], [6],
[7].

For the ASV systems, impersonation [8], replay [9], speech
synthesis (SS) [6] and voice conversion (VC) [10] are the
four major direct spoofing attack types against ASV systems
[11]. Among these four attack types, impersonation is less
likely since it requires a professional skill to mimic a target
speaker’s voice. Replay attacks in turn, are the most likely
attack type because it is caused by presenting a pre-recorded
speech signal of the target speaker. The SS refers to synthesize
target speaker’s voice given a text input whereas VC is the
modification of source speaker’s (attacker’s) voice towards that
of target speaker’s voice. SS and VC are easily accessible and
important attack types due to two main reasons. First, there
exists freely available open source toolkits that can be used by
non-experts without any background information on SS and
VC. Second, state-of-the-art SS and VC techniques produce

speech signals of high quality even using small amount of
training data. Therefore, SS and VC attacks are potential
threats for falsifying ASV systems. For a detailed review and
general information on spoofing attacks against ASV systems,
the reader is refered to [11].

Spoofing countermeasures, determining whether a speech
signal is natural or spoofed, play an important role to cope with
spoofing attacks against ASV systems. Detection of speech
synthesis (SS) and voice conversion (VC) attacks have gained
great interest by the community due to recently organized
ASVspoof Automatic Speaker Verification Spoofing and Coun-
termeasures Challenge (ASVspoof) [12]. In the challenge, a
dataset consisting of natural and spoofed speech signals has
been generated by various SS and VC techniques. One of the
aims of the challenge was to develop a common dataset and
to define a standard evaluation metric for stand-alone spoofing
detection. The evaluation dataset in ASVspoof 2015 challenge,
contained spoofed speech utterances generated with 10 dif-
ferent SS and VC techniques and developing a generalized
countermeasure to detect both known and unknown attacks
was another aim of the challenge.

Various countermeasures were proposed for the ASVspoof
2015 challenge dataset for spoofing detection with varying
performance [12]. From the evaluation results, phase based
features were found to outperform magnitude features in
general [12]. For example in [13], amplitude and phase based
features were compared for spoofing detection and simple
cosine phase features [14] were found to outperform standard
amplitude based Mel-frequency cepstral coefficients (MFCC).
Seven different (two magnitude and five phase-based) features
extraction techniques were compared in [15] and group delay
features were reported to give smallest EER on development
set of ASVspoof challenge data.

In [16], linear prediction (LP) residual signal obtained from
the LP analysis followed by long-term prediction (LTP) block
is used to extract audio quality based features (e.g. mean
energy of LP residual, maximum energy of LTP residual, mean
and maximum of LTP gain) for spoofing detection and it was
shown that proposed features yield encouraging results.

Inspired from the success of promising results reported in
[16], in this work, we propose to use phase based features
extracted from LP residual of the speech signal for spoofing
detection. Since the LP residual signal conveys information
about the excitation source, intiutively one would expect that
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it may capture relevant information to discriminate natural
speech from spoofed speech. To this end, besides phase
based features, magnitude features are also employed for
comparison. To compare the performance of the proposed
features, well known features used in spoofing detection,
MFCC and cosine phase (CosPhase), are selected as baseline
countermeasures.

II. SPOOFING DETECTION

In spoofing detection, we use Gaussian mixture model
(GMM) classifier which has been succesfully used for speaker
recognition [17] and spoofing detection [18]. In GMM, each
class is represented by a weighted sum of M Gaussian
densities, p(x|λ) =

∑M
m=1 wmpm(x), where wi is the mixture

weight of the ith Gaussian component and pi(x) is the multi-
variate Gaussian density function. Since spoofing detection is a
binary classification task, one GMM is trained for natural class
using the natural training utterances and another is trained
using the training utterances of spoofed class. λnatural and
λspoofed denote the GMMs for natural and spoofed classes,
respectively. GMM is trained with expectation maximization
(EM) algorithm using maximum likelihood (ML) criterion
[17].

During the test phase, features, X = {x1, x2, . . . ,xT },
are extracted from the test speech signal and then logarithmic
likelihood is computed using the GMM of each class:

L(X|λ) =
1

T

T∑
t=1

log p(xt|λ). (1)

Finally, the log-likelihood ratio (LLR) score is computed as
the detection score and it is defines as:

Λ(X) = L(X|λnatural)− L(X|λspoofed). (2)

In the experiments, GMMs for natural and spoof classes
consisting of 512 Gaussians are trained with 5 EM iterations.

III. LINEAR PREDICTION RESIDUAL BASED FEATURES

Linear prediction (LP) analysis assumes that a speech sam-
ple, x[n], can be estimated as a weighted sum of its p previous
samples, x̂[n] = −

∑p
k=1 αkx[n − k] [19]. Here x[n] is the

original speech sample, x̂[n] is its predicted counterpart, p is
the predictor order and {αk}pk=1 are the predictor coefficients.
LP residual (prediction error) is defined as the difference
between the actual speech sample x[n] and the predicted
sample x̂[n]

e[n] = x[n]− x̂[n] = x[n] +

p∑
k=1

αkx[n− k] (3)

Previously, it was shown that LP residual signal, e[n],
contain relevant information for speaker recognition [20].
Since LP residual convey information about the excitation
source, the input of the speech production system, by intiution,
the features derived from LP residual may convey useful
information for spoofing detection. Thus, we extract features
from LP residual signal for spoofing detection.

A. LP Residual Magnitude and Phase Features

Since the values of the LP residual signal are relatively
large, it is difficult to extract useful information from short-
term analysis. Therefore, we extract the residual magnitude
features from the analytic signal derived from the LP residual
signal [20], [21]:

ea[n] = e[n] + jeh[n] (4)

where eh[n] is the Hilbert transform of the e[n]. LP residual
magnitude cepstral coefficients (LPRMC) are obtained by
applying discrete cosine transform (DCT) to the logarithm of
the magnitude of the analytic signal given in (4).

LP residual phase features (LPRP) are defined as the cosine
of the analytic signal phase function

cos(θ[n]) =
e[n]√

e2[n] + e2h[n]
(5)

LPRMC and LPRP features were previously used in differ-
ent recognition tasks based on speech signals such as speaker
and language recognition [20], [21], [22]. In addition to these
two known feature sets, we propose to use a modified form
of LP residual phase which we refer to as LP residual phase
cepstral coefficients (LPRPC). LPRPC features are obtained
by applying discrete cosine transform to the LP residual phase
function given in (5). The extraction process of the features
derived from the LP residual signal is summarized in Fig. 1.

IV. EXPERIMENTAL SETUP

A. Database

ASVspoof 2015 database [12] consisting of natural and
spoofed speech signals generated by various speech synthesis
(SS) and voice conversion (VC) algorithms is used in the
experiments. ASVspoof 2015 database is composed from three
disjoint subsets: training, development and evaluation:

• Training set consists of 3750 natural and 12625 spoofed
speech signals. Spoofed signals are generated using three
VC algorithms (S1, S2 and S5) and two SS techniques
(S3 and S4). Training set is used to train natural and
spoof acoustic models for classifier.

• Development set includes both natural and spoofed
signals from 35 speakers (15 male and 20 female).
Spoofed signals are originated from the same five spoof-
ing techniques (S1-S5) used to generate the training set.
The development set is used for parameter tuning and
optimisation of developed countermeasures.

• Evaluation set includes 9404 natural and 184000 spoofed
utterances from 46 speakers (20 male and 26 female).
Spoofed signals generated using the same five techniques
(S1-S5) that take part in training and development sets
which are referred to as known attacks and five additional
spoofing algorithms referred to as unknown attacks (S6-
S10).

Since evaluation set consists of both known and unknown
attacks, it is used to test the generalization capability of devel-
oped countermeasures. Known attacks (S1-S5) are expected to
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Fig. 1. Block diagram of LP residual based feature extraction techniques used in this work.

yield better performance than the unknown attacks since the
same techniques are used to train the classifier.

B. Features

In the experiments, we use the MFCC features as the
baseline system. MFCC features are extracted from 20 ms
frames in every 10 ms. Power spectrum computed using
discrete Fourier transform (DFT) of Hamming windowed
speech frames are processed through a 27-channel triangular
filterbank. MFCC features are obtained by applying discrete
cosine transform (DCT) to the logarithmic filterbank outputs.
The first 20 MFCC coefficients (c0 − c19) with their first and
second order derivatives (∆ and ∆∆) yielding a total of 60
dimensional feature vectors are used in the experiments.

Cosine phase (CosPhase) features [14] are used as the
second baseline countermeasure. They are extracted from the
DFT phase spectrum of Hamming windowed speech frames.
Cosine function is applied to the unwrapped phase spectrum
to normalize the unwrapped phase. Then DCT is applied on
normalized phase and the first 20 coefficients are retained.

The LP residual features are extracted from the speech
frames with the same duration and frame shift lengths used to
extract MFCC and CosPhase features. The predictor order is
fixed to p = 24 and the first 20 coefficients are used as the
features.

C. Performance Criterion

Equal error rate (EER) is used as the performance criterion
of spoofing detection. EER is the threshold value that false
acceptance rate (Pfa) and miss rate (Pmiss) are equal. Pfa is
the ratio of number of spoofed trials classified as natural to
the total number of spoofed trials. Pmiss in turn, is the ratio
of number of natural trials classified as spoofed to the total
number of natural trials. As suggested in the ASVspoof 2015
challenge evaluation plan [12], EERs are computed using the
BOSARIS toolkit1.

Apart from reporting the EER values of each individual
feature set, in order to find out whether the proposed features
contain complementary information over the baseline MFCC
and CosPhase features, two different score fusion strategy is
considered in this study: (i) Fusion 1: is the score fusion based
on the logistic regression where fusion weights are trained
using the BOSARIS toolkit. Here, we use the development

1https://sites.google.com/site/bosaristoolkit/

data to train the fusion paremeters. (ii) Fusion 2: is the simple
score averaging technique.

V. RESULTS

In the experiments, we first report the results obtained
on the development set of ASVspoof 2015 database. The
EERs for each individual attack in development set (S1-S5)
obtained with different features are summarized in Table I.
In the table, the best numbers for each attack are shown in
boldface. It can be seen that LP residual magnitude and phase
cepstrum features (LPRMC and LPRPC) yield considerably
better performance than standard MFCC features independent
from the attack type. They outperform CosPhase features,
as well, except for the S2 attack. CosPhase features show
better performance than LP residual features in detecting
S2 attacks. However, LPRMC and LPRPC are superior to
CosPhase features in terms of average EER. From the table,
LPRP features yield relatively high EERs in comparison to
other four feature types. This is possibly because in LPRP,
we use the first 20 raw phase values as the features which
are known to be correlated and dependent. However applying
DCT, results uncorrelated feature coefficients and boosts the
spoofing detection performance considerably (average EER
reduces from 9.258% to 0.016%). The best performance is
achieved with the LPRPC features on development set which
implies that LP residual phase based features are potentially
a good candidate for spoofing detection.

TABLE I
RESULTS ON DEVELOPMENT SET.

Features S1 S2 S3 S4 S5 Avg.

MFCC 0.157 4.232 0.000 0.000 2.027 1.283

CosPhase 0.170 0.985 0.237 0.219 2.700 0.862

LPRMC 0.136 1.220 0.000 0.000 0.532 0.377

LPRP 9.330 19.017 0.024 0.037 19.234 9.528

LPRPC 0.007 0.040 0.000 0.000 0.033 0.016

Fusion 1 0.000 0.000 0.000 0.000 0.000 0.000
Fusion 2 0.007 0.188 0.000 0.000 0.153 0.069

From the last two rows of the Table I, logistic regression
based score fusion considerably improves the spoofing detec-
tion performance in comparison to best performing system
(LPRPC). Score averaging technique in turn, does not bring
any performance improvement but slightly increases the EER.
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TABLE II
EERS (%) FOR EACH INDIVIDUAL ATTACK ON EVALUATION SET.

Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

MFCC 0.075 3.090 0.000 0.000 1.579 1.507 0.259 0.000 0.334 18.927 2.577
CosPhase 0.083 0.686 0.064 0.064 2.041 2.832 0.138 0.326 0.332 34.748 4.131

LPRMC 0.049 1.072 0.000 0.000 0.424 1.283 2.584 0.088 0.968 30.089 3.656

LPRP 8.537 16.983 0.016 0.025 17.398 18.116 17.021 7.973 15.293 29.312 13.067

LPRPC 0.006 0.070 0.000 0.000 0.021 0.111 2.439 0.000 0.062 49.931 5.264

Fusion 1 0.000 0.017 0.000 0.000 0.003 0.046 0.236 0.000 0.005 40.711 4.102

Fusion 2 0.000 0.256 0.000 0.000 0.101 0.235 0.113 0.000 0.037 25.363 2.610

Next, we study the spoofing detection performance of the
proposed features on evaluation set. The EERs for each
individual spoofing attack technique are given in Table II.
Independent of the features, S10 attack, unit selection based
speech synthesis technique, is the most difficult attack type
to detect in comparison to remaining nine techniques. MFCC
features yield the smallest EER for S10 attack. Similar to the
results on development set, LPRPC features are superior to
other features for detecting the eight attacks among the ten
techniques. For S7 and S10 attacks, MFCC features show
better performance than other features. Since the EERs of S10
attack are much higher than that of other spoofing techniques,
the average EERs (the last column in Table II) become highly
dependent on the performance of detecting the S10 attack.
Therefore, we summarize the results on evaluation set in
Table III in a different way. In the table, we report the
average EERs for known and unknown attacks, seperately.
While computing the average EER of unknown attacks, we
excluded S10 and report the EER of S10 attack separately.

As in the case for development set, LP residual phase
cepstrum (LPRPC) features yields the smallest average EER
for known attacks on evaluation set. LPRPC gives approxi-
mately 97% and 96% better performance than MFCC (EERs of
0.019% vs. 0.949%) and CosPhase features (EERs of 0.019%
vs. 0.588%) on known attacks, respectively. However, on
unknown attacks, MFCC features slightly outperform LPRPC.
The performance differences between MFCC and LPRPC
further increase on S10 attack. MFCC yields the smallest EER
on S10 attack among the five feature extraction techniques.
Comparing three LP residual variants, LPRPC features are
superior to LPRP and LPRMC for known and unknown
attacks. However, interestingly, LPRP gives the smallest EER
on S10 attack among the three LP features.

Similar to the observations on development set, applying
score fusion considerably reduces the EER of known and
unknown attacks, in general. However, the EER of S10 attack
after score fusion is not better than the best performing system
(MFCCs) for both logistic regression and score averaging
fusion strategies. For known and unknown attacks (except S10)
Fusion 1 considerably outperforms Fusion 2. However, for S10
attack, the simple score averaging method, Fusion 2, yields
approximately 38% smaller EER than Fusion 1 method. This
is possibly because of the training the linear fusion weights.

TABLE III
RESULTS ON EVALUATION SET

Known Unknown Avg.
Features (S1-S5) (S6-S9) S10 (S1-S10)

MFCC 0.949 0.525 18.927 2.577
CosPhase 0.588 0.907 34.748 4.131

LPRMC 0.309 1.231 30.089 3.656

LPRP 8.592 14.601 29.312 13.067

LPRPC 0.019 0.653 49.931 5.264

Fusion 1 0.004 0.072 40.711 4.102

Fusion 2 0.071 0.096 25.363 2.610

Since the fusion weights for logistic regression based method
(Fusion 1) were trained using the score files on development
set, applying the same weights to the evaluation scores may
fail to improve the performance because of the existence of
unforeseen attacks appear in evaluation set.

Figure 2 shows the DET curves for MFCC and LPRPC
features on evaluation set. Note that, although in the ASVspoof
evaluation, the results are reported as the average EER over
different attacks (Tables I and III), here we pooled the scores of
nine attacks (S1-S9) to produce DET curves and to compute
the EERs. Similar to previous results, we excluded the S10
attack while generating the DET curves. From the DET curves,
it can be seen that MFCC features give almost two times higher
EER than LPRPC features which shows the importance and
the superior performance of the proposed features on spoofing
detection.

VI. CONCLUSION

In this work, we proposed to use various features ex-
tracted from LP residual signal for spoofing detection and
compared their performances with MFCC and simple but
powerful CosPhase features. Experiments on ASVspoof 2015
challenge database revealed that phase features extracted from
LP residual signal (LPRPC) conveys relevant information
for spoofing detection. The results on development set of
ASVspoof database showed that LPRPC features considerably
improves the spoofing detection performance in comparison to
standard MFCC and CosPhase features. Approximately 97%
relative improvement was observed using LPRPC features over
MFCC. Similarly, another type of LP residual features, LP
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Fig. 2. DET plots for evaluation set. All the scores (except S10) in the
evaluation set are pooled to produce DET curves.

residual magnitude cepstral features (LPRMC) were found to
be superior to MFCC features on development set.

For the evaluation set, LPRPC yields better performance
than other feature sets on unknown attacks. However, for S10
attack, the most difficult attack type in ASVspoof database
[12], MFCC features yield better performance than LP residual
phase features.

Studying the LP residual features for the case of replay
and impersonation attacks against ASV systems would be
interesting as a future work.
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