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Abstract—When identifying a nonstationary autoregressive
process, e.g. for the purpose of signal prediction or parametric
spectrum estimation, two important decisions must be taken.
First, one should choose the appropriate order of the autoregres-
sive model, i.e., the number of autoregressive coefficients that will
be estimated. Second, if identification is carried out using the local
estimation technique, such as the localized version of the method
of least squares, one should select the most appropriate estimation
bandwidth, i.e., the effective width of the local data window
used for the purpose of parameter tracking. The paper presents
the first unified treatment of the problem of joint order and
bandwidth selection. Two solutions to this problem are examined,
first based on the predictive least squares principle, and second
exploiting the suitably modified Akaike’s final prediction error
statistic. It is shown that the best results are obtained if the two
approaches mentioned above are combined.

I. INTRODUCTION

Autoregressive signal modeling is a basis for practical
applications in different research areas such as biology and
biomedicine, telecommunications, seismology etc. [1] - [9].
Since in majority of cases the analyzed signals are nonsta-
tionary, the time-varying autoregressive representation has to
be used. When signal characteristics vary slowly with time,
the time-varying autoregressive models can be obtained using
the local estimation techniques. In this approach the measure
of fit, minimized by the identification routine, is modified in
such a way that estimation results depend only or mainly on
the most recently collected data samples.

Two important decisions that must be taken when identi-
fying the time-varying autoregressive model are the choice
of the number of estimated autoregressive coefficients, i.e.,
the model order, and selection of the size of the local anal-
ysis interval, i.e., the estimation bandwidth (frequency range
in which parameter changes can be tracked “successfully”).
Both decisions may have important quantitative (estimation
accuracy) and quantitative (estimation adequacy) implications.

For stationary signals order estimation is a well-explored
statistical problem, which can be solved in many different

This work was partially supported by the National Science Center under
the agreement UMO-2015/17/B/ST7/03772. Calculations were carried out at
the Academic Computer Centre in Gdańsk.

ways. The most popular solutions are those based on the
Akaike information criterion (AIC) [10], Schwarz criterion,
frequently referred to as the Bayesian information crite-
rion (BIC) [11], and Rissanen’s minimum description length
(MDL) criterion [12]. Generalized versions of the AIC and
BIC criteria, applicable to local estimation schemes, were
proposed in [13] and [14], respectively.

Selection of the estimation bandwidth for the purpose of
analysis of nonstationary signals is a less investigated topic.
The solution based on prequential analysis [15] was proposed
in [16], [17]. Another solution, based on the analysis of the
intersection of the confidence intervals (ICI), was suggested
in [18] and further developed in [19] and [20]. Finally, for
noncausal estimation schemes, the problem of bandwidth
selection was solved using the cross-validation approach [21],
[22].

To the authors best knowledge the problem of joint order
and bandwidth selection has not been considered so far.

II. STATIONARY AUTOREGRESSIVE PROCESSES

Stationary autoregressive (AR) process of order n is gov-
erned by the equation

y(t) =

n∑
i=1

aiy(t− i) + e(t), var[e(t)] = ρn (1)

where t denotes the discrete (normalized) time, {e(t)} is
a sequence of zero-mean independent random variables and
all zeros of the characteristic polynomial An(z−1) = 1 −∑n
i=1 aiz

−i lie inside the unit circle in the complex plane.
Note that the AR equation (1) can be also put down in the
form

y(t) = ϕT
n (t)θn + e(t) (2)

where ϕn(t) = [y(t − 1), . . . , y(t − n)]T denotes regression
vector and θn = [a1, . . . , an]T is the vector of AR coefficients.

The spectral density function of the AR process (1) can be
expressed in the form

S(ω) =
ρn

|An(e−jω)|2
(3)

where ω ∈ [0, π] denotes normalized angular frequency and
j =
√
−1.
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III. NONSTATIONARY AUTOREGRESSIVE PROCESSES AND
THEIR IDENTIFICATION

In this paper we will consider nonstationary AR process
governed by

y(t) = ϕT
n (t)θn(t) + e(t), var[e(t)] = ρn(t) (4)

where θn(t) = [a1(t), . . . , an(t)]T is the vector of time-
varying AR coefficients.

When the coefficients vary slowly with time, the AR process
can be regarded as locally stationary and can be identified
using local estimation techniques. An elegant theory of locally
stationary processes (under agreeable technical assumptions –
such as uniform stability and bounded parameter variation –
the time-varying AR process fits this framework) was recently
presented by Dahlhaus [23]. One of the key elements of this
theory is the concept of instantaneous spectrum, which for (4)
is defined as

S(ω, t) =
ρn(t)

|An(e−jω, t)|2
(5)

where

An(z−1, t) = 1−
n∑
i=1

ai(t)z
−i.

Identification of the model (4) will be carried out using
the technique known as exponentially weighted least squares
(EWLS). Denote by λk, 0 < λk < 1, the so-called forgetting
constant. The EWLS estimates of θn(t) and ρ(t) can be
obtained from

θ̂n|k(t) = [â1,n|k(t), . . . , ân,n|k(t)]T

= arg min
θn

t−1∑
i=0

λik[y(t− i)−ϕT
n (t− i)θn]2

ρ̂n|k(t) =
βn|k(t)

Lk(t)

βn|k(t) =
t−1∑
i=0

λik[y(t− i)−ϕT
n (t− i)θ̂n|k(t)]2

(6)

where Lk(t) =
∑t−1
i=0 λ

i
k denotes the effective width of the

exponential window (which converges to Lk(∞) = 1/(1−λk)
as t becomes large). It is well-known that the EWLS estimates
can be computed recursively [24]

θ̂n|k(t) = θ̂n|k(t− 1) + R−1n|k(t)ϕn(t)εn|k(t)

Rn|k(t) = λkRn|k(t− 1) +ϕn(t)ϕT
n (t)

βn|k(t) =

λk

[
βn|k(t− 1) +

ε2n|k(t)

λk +ϕT
n (t)R−1n|k(t− 1)ϕn(t)

]
Lk(t) = λkLk(t− 1) + 1

where
εn|k(t) = y(t)−ϕT

n (t)θ̂n|k(t− 1)

denotes the one-step-ahead prediction error. Moreover, the
inverse of the exponentially weighted regression matrix

Pn|k(t) = R−1n|k(t) =

[
t−1∑
i=0

λikϕn(t− i)ϕT
n (t− i)

]−1
can be also evaluated in a recursive manner.

Pn|k(t)

=
1

λk

[
Pn|k(t− 1)−

Pn|k(t− 1)ϕn(t)ϕT
n (t)Pn|k(t− 1)

λk +ϕT
n (t)Pn|k(t− 1)ϕn(t)

]
Based on the model (6), one arrives at the following estimate

of the instantaneous spectrum

Ŝn|k(ω, t) =
ρ̂n|k(t)

|Ân|k(e−jω, t)|2
(7)

where

Ân|k(z−1, t) = 1−
n∑
i=1

âi,n|k(t)z−i.

Properties of the spectral estimate (7), both quantitative and
qualitative, strongly depend on the choice of forgetting con-
stant λk and the adopted order of autoregression n. Forgetting
constant decides upon the estimation bandwidth which should
be chosen in accordance with the speed of parameter variation.
When parameters vary at a slow rate, λk should be set close
to 1, which guarantees large estimation memory Lk(∞), i.e.,
small variance of parameter estimation errors. When param-
eter variation is (relatively) fast, estimation memory should
be shortened (by moving λk away from 1) to reduce bias
errors. If the speed of parameter variation is not known a
priori, or if it also changes over time, resolution of the bias-
variance trade-off may be a difficult task. The choice of the
model order n has important qualitative implications. If the
order of autoregression is underestimated, the corresponding
spectral estimates may not reveal some important frequency
components of the analyzed signal. When it is overestimated,
the corresponding spectrum estimate may show spurious peaks
suggesting the presence of nonexistent frequency modes.

When the signal is nonstationary decision upon the model
order and the most appropriate estimation bandwidth should
be made in an adaptive, data-dependent fashion. This task
can be accomplished using parallel estimation schemes, i.e.,
by running simultaneously several estimation algorithms with
different bandwidth and order settings, and choosing the one
which provides the best estimates according to some local
performance measure.

Remark

For a given value of λk the estimates θ̂n|k(t), ρ̂n|k(t),
n = 1, . . . , N can be evaluated in a computationally efficient
way using time- and order-recursive algorithms based on
Hausholder transformation [25], or using the least squares
lattice (ladder) algorithms [26], [27].
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IV. ADAPTIVE ORDER AND BANDWIDTH SELECTION

Consider K EWLS algorithms, equipped with forgetting
constants λ1, . . . , λK , working in parallel, each providing N
structural variants of the local AR model corresponding to dif-
ferent hypothetical model orders n = 1, . . . , N . The selection
task amounts to finding the most appropriate local estimates of
n and k. Based on these estimates, the instantaneous spectrum
estimate can be obtained in the form

Ŝn̂(t)|k̂(t)(ω, t) =
ρ̂n̂(t)|k̂(t)(t)

|Ân̂(t)|k̂(t)(e−jω, t)|2
. (8)

A. Predictive least squares

Predictive least squares (PLS) statistic was originally pro-
posed by Rissanen [28], [29] as a tool for model order estima-
tion in the case where the identified process is stationary. Later
on, the localized version of this statistic was successfully used
to select estimation bandwidth of competing finite-memory
adaptive filters [16], [17]. The local PLS measure of fit is
given by

PLSn,k(t) =
l−1∑
i=0

ε2n|k(t− i) (9)

where l ∈ [20, 50] is the width of the local decision window
T (t) = [t− l + 1, t].

The estimates of n and k can be obtained by minimizing
(9) over K = {1, . . . ,K} and N = {1, . . . , N}

{n̂(t), k̂(t)} = arg min
n∈N
k∈K

PLSn,k(t). (10)

According to (10), from NK competing models we choose
the one with the “recently the best” prediction record.

B. Final prediction error

Denote by ỹ(t) another realization of the analyzed nonsta-
tionary process, independent of y(t) used for process identi-
fication. As a measure of predictive capability of the model
characterized by the vector of parameters θ̂n|k(t), one can use
the following quantity

δn|k(t) = E{[ỹ(t)− ϕ̃T
n (t)θ̂n|k(t)]2} (11)

where the expectation is taken over ỹ(t) and y(t). Note that
according to (11) the quality of the model is checked on an
independent data set, different from the one used to estimate
model parameters.

Assume that n is not smaller than the true order of the
analyzed AR process. We will work out a “stationary” ap-
proximation of δn|k(t). Suppose that y(t) is governed by (2).
Then it holds that E[θ̂n|k(t)] ∼= θn and [24]

cov[θ̂n|k(t)] ∼=
ρnΦ−10

Mk(t)
(12)

where Mk(t) = (
∑t−1
i=0 λ

i
k)2/(

∑t−1
i=0 λ

2i
k ) denotes the so-

called equivalent window width and Φ0 = E[ϕ(t)ϕT(t)].

Table I
DESCRIPTION OF FOUR VARIANTS OF MIXED SELECTION

Variant A B C D
Step 1 FPE(n) PLS(k) PLS(n) FPE(k)
Step 2 PLS(k) FPE(n) FPE(k) PLS(n)

Let ∆θ̂n|k(t) = θ̂n|k(t)− θn. Note that

δn|k(t) = E{[ẽ(t)− ϕ̃T
n (t)∆θ̂n|k(t)]2}

= ρn + E{ϕ̃T
n (t)cov[θ̂n|k(t)]ϕ̃n(t)}

= ρn + tr{cov[θ̂n|k(t)]Φ0} ∼= ρn

[
1 +

n

Mk(t)

]
.

(13)

On the other hand, it holds that [24]

E[ρ̂n|k(t)] ∼= ρn

[
1− n

Mk(t)

]
(14)

leading to the following estimate of δn|k(t)

δ̂n|k(t) = ρ̂n|k(t)

[
1 + n

Mk(t)

1− n
Mk(t)

]
= FPEn,k(t) (15)

which is identical with the generalized version of Akaike’s
final prediction error (FPE) statistic proposed in [30] as a
tool for model order selection. The analysis carried out above
shows that the same statistic can be used for the purpose
of choosing the estimation bandwidth. The joint order and
bandwidth selection rule takes the form

{n̂(t), k̂(t)} = arg min
n∈N
k∈K

FPEn,k(t). (16)

Note that for large values of t the quantity Mk(t) in (16) can
be replaced with its steady state value Mk(∞) = (1+λk)/(1−
λk).

C. Mixed solutions

Table 1 specifies 4 mixed variants obtained when one
criterion is used for model order selection and the other one -
for bandwidth selection. In the first case (A), initially the best
value of n is searched for each value of k, then the best value
of k is selected

n̂k(t) = arg min
n∈N

FPEn,k(t), k ∈ K

k̂(t) = arg min
k∈K

PLSn̂k(t),k(t).
(17)

In the second case (B) the same operations are performed in
the reverse order

k̂n(t) = arg min
k∈K

PLSn,k(t), n ∈ N

n̂(t) = arg min
n∈N

FPEn,k̂n(t)(t).
(18)

The remaining two variants (C, D) use PLS for order selection
and FPE for bandwidth selection.
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Table II
VALUES OF THE COEFFICIENTS ri AND φi USED IN SIMULATION

i 1 2 3 4 5
ri 0.9852 0.8558 0.9480 0.9168 0.8554
φi 0.5197 0.9709 1.4047 1.8977 2.6865

V. SIMULATION RESULTS

To verify the proposed methods, a time-varying variable-
order AR process was generated using the pole location
technique.

During the first phase of simulation five pairs of complex
conjugate poles of the forming filter 1/A(z−1, t), i.e., the roots
of the characteristic polynomial A(z−1, t), were gradually
moved (one at a time) from their initial zero positions to
terminal locations z±i = rie

±jφi , i = 1, . . . , 5, close to the
unit circle - see Figure 1 and Table 2. The pole locus changed
according to the following rule

γ1(t)r1e
±jφ1 for t ∈ T1

r1e
±jφ1 , . . . , ri−1e

±jφi−1 ,γi(t)rie
±jφi for t ∈ Ti, i > 1

(19)

where Ti = {800(i − 1) + l, l = 1, . . . , 800} and γi(t) =
[t − 800(i − 1)]/800. According to (19), in the i-th period
of time Ti the i-th pair of complex poles was moved (with a
constant speed) towards the unit circle, while the first i − 1
pairs were held at fixed positions. Note that the order of the
resulting AR process gradually increased from n = 2 (for
t ∈ T1) to n = 10 (for t ∈ T5).

During the second phase of simulation the poles were
moved back to the origin in an analogous way as described
above and in the same order, i.e., starting from z±1 and
ending with z±5 . Evolution of the spectral density function of
the process generated in this way and an exemplary process
realization are shown in Figure 2.

Table 3 shows the mean values of the Itakura-Saito spectral
distortion measure (averaging was carried out over time and
20 realizations of a nonstationary AR process) yielded by 5
EWLS algorithms (λ1 = 0.9775, λ2 = 0.985, λ3 = 0.99,
λ4 = 0.9933, λ5 = 0.9955) of different orders (n = 1, . . . , 20)
and by 4 variants of the parallel estimation scheme: the variant
(10) based entirely on the predictive least squares statistic, the
variant (16) based entirely on the final prediction error statistic,
and two mixed variants (17) and (18) (the other mixed variants
gave worse results).

The best results were obtained for the mixed variants,
which is a straightforward consequence of the fact that, as
observed, the FPE criterion is more successful in selecting
the model order, and the PLS criterion - in choosing the
estimation bandwidth. The same conclusions can be reached
after examining the mean squared parameter estimation errors
and mean squared prediction errors (not shown here due to
the lack of space).

-1 -0.5 0 0.5 1

Real Part

0

0.2

0.4

0.6

0.8

1

Im
a

g
in

a
ry

 P
a

rt

z
+

1

z
+

2

z
+

3

z
+

4

z
+

5

Figure 1. Pole trajectories of a nonstationary AR model.
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Figure 2. Evolution of the true spectral density function of a simulated process
(a) and a typical process realization (b).

VI. CONCLUSION

Selection of the order of a nonstationary autoregressive
process and the choice of the most appropriate estimation
bandwidth are two important problems that so far have been
considered and solved separately. The paper presented the
first unified treatment of both problems. Two methods were
proposed that can be used for joint order and bandwidth
selection - the predictive least squares approach and the
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Table III
COMPARISON OF ESTIMATION RESULTS (MEAN SPECTRAL DISTORTION MEASURES) OBTAINED FOR 5 FIXED-ORDER (n = 1, . . . , 20) EWLS

ALGORITHMS WITH DIFFERENT FORGETTING CONSTANTS λ1, . . . , λ5 , WITH THE RESULTS YIELDED BY 4 ORDER-AND-BANDWIDTH-ADAPTIVE
PARALLEL ESTIMATION SCHEMES: THE ONE BASED EXCLUSIVELY ON THE PLS STATISTIC, THE ONE BASED EXCLUSIVELY ON THE FPE STATISTICS AND

TWO MIXED SOLUTIONS A AND B.

n/N λ1 λ2 λ3 λ4 λ5 PLS FPE A B
1 2.147 2.132 2.131 2.148 2.183 2.160 2.176 2.160 2.160
2 0.967 0.948 0.948 0.974 1.037 0.967 0.968 0.965 0.965
3 0.764 0.743 0.743 0.771 0.844 0.767 0.765 0.760 0.762
4 0.332 0.313 0.318 0.353 0.442 0.333 0.331 0.325 0.325
5 0.284 0.261 0.264 0.301 0.399 0.282 0.277 0.271 0.272
6 0.165 0.140 0.143 0.182 0.290 0.160 0.153 0.148 0.148
7 0.168 0.138 0.137 0.173 0.274 0.156 0.149 0.143 0.143
8 0.153 0.118 0.115 0.149 0.243 0.133 0.123 0.118 0.118
9 0.157 0.118 0.112 0.146 0.238 0.128 0.116 0.112 0.111
10 0.164 0.118 0.108 0.136 0.221 0.124 0.111 0.107 0.106
11 0.179 0.127 0.113 0.138 0.218 0.126 0.112 0.108 0.107
12 0.196 0.137 0.119 0.141 0.217 0.129 0.114 0.110 0.109
13 0.212 0.147 0.125 0.145 0.219 0.132 0.115 0.111 0.110
14 0.230 0.157 0.132 0.149 0.222 0.134 0.116 0.112 0.111
15 0.247 0.168 0.138 0.154 0.225 0.136 0.116 0.113 0.111
16 0.264 0.177 0.144 0.157 0.227 0.137 0.116 0.113 0.112
17 0.282 0.188 0.151 0.161 0.229 0.139 0.117 0.114 0.112
18 0.303 0.199 0.158 0.166 0.232 0.141 0.117 0.114 0.113
19 0.324 0.212 0.166 0.171 0.235 0.142 0.117 0.115 0.113
20 0.344 0.223 0.173 0.175 0.238 0.144 0.118 0.115 0.114

approach based on the modified Akaike’s final prediction error
criterion. It was shown that the best results can be obtained
when both approaches are appropriately combined.
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