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Abstract—The performance of automatic speech recognition
systems under noisy environments still leaves room for improve-
ment. Speech enhancement or feature enhancement techniques
for increasing noise robustness of these systems usually add com-
ponents to the recognition system that need careful optimization.
In this work, we propose the use of a relatively simple curriculum
training strategy called accordion annealing (ACCAN). It uses a
multi-stage training schedule where samples at signal-to-noise
ratio (SNR) values as low as 0dB are first added and samples
at increasing higher SNR values are gradually added up to an
SNR value of 50dB. We also use a method called per-epoch
noise mixing (PEM) that generates noisy training samples online
during training and thus enables dynamically changing the SNR
of our training data. Both the ACCAN and the PEM methods
are evaluated on a end-to-end speech recognition pipeline on the
Wall Street Journal corpus. ACCAN decreases the average word
error rate (WER) on the 20dB to -10dB SNR range by up to
31.4% when compared to a conventional multi-condition training
method.

I. INTRODUCTION

The performance of automatic speech recognition (ASR)
systems has increased significantly with the use of deep neural
networks (DNNs) [1]. However, their performance in noisy
environments still leaves room for improvement. Over the past
decades, a multitude of methods to improve noise robustness
of ASR systems has been proposed [2], with many methods
being applicable to DNNs. These methods enhance noise
robustness at various levels and are applied prior to feature
extraction, at the feature level, and during training.

Some example enhancement methods applied prior to fea-
ture extraction include denoising methods [3] and source sep-
aration methods [4] [5]. Methods applied at the feature level
include methods that produce auditory-level features [6] and
feature space adaptation methods [7]. Other approaches use
DNNs, e.g. feature denoising with deep autoencoders [8] [9]
or feature extraction from the raw waveform via convolutional
neural networks (CNNs) [10] [11]. Many of these strategies
add components to the speech recognition system that need
careful optimization.

The training method itself can have a major influence on
the performance of a neural network under noisy conditions.
Training on noisy data is an established method of increasing
the noise robustness of a network. Noisy training sets with a
range of SNR values e.g. 10 dB - 20 dB [12] or 0 dB - 30 dB
[10] are used during training. Other training methods such as

dropout [13] - originally intended to improve regularisation
- have been shown to also improve noise robustness [12].
The same is true for model adaptation/noise aware training
techniques [12].

This paper presents general training methods for improving
noise robustness in recurrent neural network (RNN)-based rec-
ognizers. RNNs are used here because they have demonstrated
state-of-the-art performance in tasks such as the common
sequence labelling task in speech recognition [14] [15].

In particular, we introduce a new training strategy called
accordion annealing (ACCAN) which exploits the benefits
of curriculum-based training methods. By first training the
network on low SNR levels down to 0 dB and gradually
increasing the SNR range to encompass higher SNR levels,
the trained network shows better noise robustness when tested
under a wide range of SNR levels.

This work also investigates the usefulness of adding noise
both at the acoustic waveform level and at the feature rep-
resentation level during training. In particular, we exploit a
method called per-epoch noise mixing (PEM), which is a
waveform-level data augmentation method. It enables us to
generate a new training set for every epoch of training, i.e.
each training sample is mixed with a newly sampled noise
segment at a randomly chosen SNR in every epoch. This
form of data augmentation prevents networks from relying on
constant noise segments for classification and helps in creating
the necessary training samples over a wide SNR range. These
steps lead to improved generalization and noise robustness of
the trained network. Our results are evaluated on the Wall
Street Journal corpus in a large-vocabulary continuous speech
recognition (LVCSR) task. The testing is carried out on a large
SNR range going from clean conditions (> 50 dB) down to
-20 dB.

The paper is organized as follows: Section II presents
our training methods for improved noise robustness. The
evaluation setup is detailed in Section III, with results given
in Section IV followed by discussions in Section V and
concluding remarks in Section VI.
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II. TRAINING METHODS FOR IMPROVED NOISE
ROBUSTNESS

A. Baseline

Our baseline method takes advantage of multi-condition
training [16] in order to increase the noise robustness of the
network. Pink noise is added to a clean dataset to create sam-
ples with the desired SNR. Each training sample is randomly
chosen to be of an SNR level in the range 0 to 50 dB with 5
dB steps. This wide range is larger than the SNR ranges used
in previous work (e.g. 0 to 30 dB as in [10]). Our exhaustive
simulations show that using such a large range resulted in the
best performance on the test datasets. The noise mixing is done
once at the waveform-level before filterbank audio features are
computed. This one set of training data is presented to the
network over all training epochs. The resulting networks will
be referred to as “noisy-baseline”. For completeness, we also
include a “clean-baseline”, i.e. a network that is only trained
on clean speech.

B. Gaussian noise injection

Gaussian noise injection is a well-known method for im-
proving generalisation in neural networks [17]. It is used here
to improve the noise robustness of the network.

During training, artificial Gaussian noise is added to the
filterbank features created from the different SNR samples.
The amount of additive noise is drawn from a zero-centered
Gaussian distribution. Using a Gaussian with a standard de-
viation of σ = 0.6 yielded the best results. This method is
referred to as the “Gauss-method” in the rest of the paper.

C. Per-epoch noise mixing (PEM)

PEM is a method for adding noise to the waveform level
during training. In every training epoch, each training sample
is mixed with a randomly sampled noise segment at a ran-
domly sampled SNR. The training procedure consists of the
following steps:

1) Mix every training sample with a randomly selected
noise segment from a large pink noise pool to create
a resulting sample at a randomly chosen SNR level
between 0 to 50 dB.

2) Extract audio features (e.g. filterbank features) for the
noise-corrupted audio to obtain the training data for the
current epoch.

3) Optional: add Gaussian noise to the audio features.
4) Train on newly generated training data for one epoch.
5) Discard this training data after the epoch to free up

storage.
6) Repeat from step 1 until training terminates.
This method has several key advantages over conventional

pre-training preprocessing methods. Firstly, it enables unlim-
ited data augmentation on large speech datasets. With conven-
tional methods, augmenting training data at the waveform level
with real-world noise at various SNR values is prohibitively
expensive in terms of processing time and training data size.
PEM allows use to overcome these restrictions by training

on the GPU and pre-processing the next-epoch training data
in parallel on the CPU. After an epoch was trained on, the
training data gets discarded to free storage for the next epoch.

Secondly, PEM shows the network more unique training
data: every training sample is presented at a selection of SNRs
and with as many noise samples as can be extracted from the
noise file and as needed by the number of epochs to reach a
steady-state accuracy level. Thirdly, other noise types, different
SNR training ranges, and even different audio features could
be quickly tested as the training data can be easily augmented
online. Finally, PEM enables us to dynamically change the
SNR level during training, which renders advanced training
paradigms such as curriculum learning (section II-D) feasible.

In contrast to the Gauss-method, PEM permits more control
over the training data. Real-world noise is added to the acous-
tic waveform at controlled SNRs, ensuring that the training
data corresponds to realistic noise corruption with results that
can be evaluated. Of course, PEM can be combined with
Gaussian noise addition (optional step three in Section II-C).
We refer to PEM without Gaussian noise injection as “Vanilla-
PEM” and to PEM with Gaussian noise injection as “Gauss-
PEM”.

D. Curriculum learning

Neural networks have been shown to optimize on the SNR
they are trained on [16]. A network trained on clean conditions
thus fares worse than a network trained on noisy conditions.
Also, networks trained on a vast SNR range generally do worse
on a single SNR than networks optimized for this specific
SNR. In order to achieve high accuracy under both high and
low SNR with a single network, we explored novel training
paradigms based on curriculum learning. While curriculum
learning has been used in image classification (scheduled
denoising autoencoders, [18]) as well as speech recognition
(SortaGrad [15], a method for faster accuracy convergence),
this is the first work targeted at LVCSR under noisy conditions.

Our novel ACCAN training method applies a multi-stage
training schedule: in the first stage, the neural network is
trained on the lowest SNR samples. In the following stages, the
SNR training range is expanded in 5 dB steps towards higher
SNR values. A typical schedule is shown in Table I. In every
stage, training repeats until the WER on the development set
no longer improves. At the end of each stage, the weights of
the best network are stored and used as the starting point for
the next stage. Both training and validation sets share the same
SNR range. The ACCAN approach seems counter-intuitive as
the network is first trained on noisy data that is difficult to
classify. However, the noise allows the network to explore
the parameter space more extensively at the beginning [19].
We also evaluated a method called “ACCAN-reversed”, which
expands from high SNR to low SNR, but the results were very
close to the standard “Gauss-PEM” approach.

III. SETUP

Audio database: All experiments were carried out on
the Wall Street Journal (WSJ) corpus (LDC93S6B and
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TABLE I
THE ACCAN TRAINING STRATEGY: SNR RANGES [DB] OF THE TRAINING

STAGES

Method Stage 1 Stage 2 ... Stage 10
ACCAN [0] [0, 5] ... [0, 5, ..., 45, 50]

ACCAN reversed [50] [50, 45] ... [50, 45, ..., 5, 0]

LDC94S13B) in the following configuration:
• training set: train-si84 (7138 samples, 15h of speech),
• development set: test-dev93 (503 samples, 1h of speech),
• test set: test-eval92 (333 samples, 0.7h of speech).

For noise corruption, we used two different noise types: pink
noise generated by the Audacity [20] software and babble
noise from the NOISEX database [21].

Data preparation and language model: The labels and
transcriptions were extracted with EESEN [14] routines. All
experiments were character-based and used 58 labels (letters,
digits, punctuation marks etc.) During test time, the network
output was decoded with the Weighted Finite State Trans-
ducer (WFST) approach from the EESEN framework, which
allows us to apply a trigram language model. The language
model used an expanded vocabulary in order to avoid out-
of-vocabulary words occurring in the standard WSJ language
model.

Audio features: We used 123-dimensional filterbank fea-
tures that consisted of 40 filterbanks, 1 energy term and their
respective first and second order derivatives. The features were
generated by preprocessing routines from EESEN [14]. Each
feature dimension is zero-mean and unit-variance normalized.

Neural network configuration: Our recognition pipeline
is a end-to-end solution that involves a RNN as the acoustic
model. In order to automatically learn the alignments between
speech frames and label sequences, the Connectionist Tem-
poral Classification (CTC) [22] objective was adopted. The
Lasagne library [23] enabled us to build and train our 5-layer
neural network. The first 4 layers consisted of bidirectional
long short-term memory (LSTM) [24] units with 250 units in
each direction. The fifth and final layer was a non-flattening
dense layer with 59 outputs, corresponding to the character la-
bels + the blank label required by CTC. The network contained
8.5M tunable parameters. All layers were initialized with the
Glorot uniform strategy [25]. Every experiment started with
the exact same weight initialization. During training, the Adam
[26] stochastic optimization method was used. To prevent
overfitting and to increase noise robustness, dropout [13] was
used (dropout probability=0.3). Every epoch of training, the
WER on the development set was monitored with a simple
best-path decoding approach.

With all training strategies except ACCAN, the network was
trained for a generous 150 epochs. The networks weights from
the epoch with the lowest WER were kept for evaluation. Gen-
erally, the improvements in WER saturated well before 150
epochs were reached. The ACCAN method used a patience of
5 as to switch between SNR stages, i.e. if the WER did not
improve for 5 epochs on the current SNR stage, the training
continued on the next SNR stage. By respecting the stage-
switching policy, ACCAN reached the final SNR stage with

the full SNR range at epoch 190. Saturation kicked in at epoch
240. While ACCAN trained for more epochs than the others,
it only trained for 50 epochs on the full SNR range.

IV. RESULTS

The reported results are given for the ’test-eval92’ evalua-
tion set for the Wall Street Journal corpus. The evaluation set
was tested in clean condition and with added pink noise or
babble noise at 15 SNR levels from 50dB to -20 dB in dB
steps. We report in Table II the average WER over following
SNR ranges:

• Full SNR range: [clean signal, 50dB to -10dB]
• High SNR range: [50dB to 0dB]
• Low SNR range: [0dB to -10dB]
• range of interest (ROI): [20dB to -10dB]

We choose to include the ROI, as our hearing tests showed that
this range seems to well reflect common scenarios in public
environments, where a clean speech signal is most often not
found. Detailed results for each SNR individually are given in
Table III. Results for -15dB and -20dB are reported too, but
should be considered as extreme cases. WER improvements
are given as relative improvements in the text.

TABLE II
AVERAGE ABSOLUTE WER [%] FOR GIVEN SNR RANGES AFTER

DECODING. PRINTED BOLD: LOWEST WER.

Testing against pink noise
Method Full High Low ROI
Clean-baseline 54.7 29.0 109.6 67.9
Noisy-baseline 46.0 23.3 88.6 51.7
Gauss 37.4 19.8 71.1 42.1
Vanilla-PEM 35.6 17.8 70.6 40.8
Gauss-PEM 34.1 16.6 64.7 37.2
ACCAN 34.4 18.1 59.5 36.0
ACCAN reversed 35.2 17.8 66.3 38.8

Testing against babble noise
Method Full High Low ROI
Clean-baseline 53.0 32.0 113.7 72.1
Noisy-baseline 53.3 29.9 114.0 68.4
Gauss 45.4 25.4 96.3 56.9
Vanilla-PEM 41.0 22.8 88.3 52.3
Gauss-PEM 39.5 21.6 83.7 49.0
ACCAN 39.6 21.5 80.2 47.0
ACCAN reversed 39.5 21.5 82.9 48.2

A. Noise addition methods

This section summarizes results from the baseline, Gauss,
Vanilla-PEM and Gauss-PEM methods, all trained on the SNR
range from 0dB to 50dB. Our network trained on clean speech
only (clean-baseline) achieves 13.8% WER with a trigram
language model and our 8.5M parameter network, while in
literature [27], a 13.5% WER was achieved using a trigram
language model and 3x larger (26.5M) parameter network.
This confirms that our end-to-end speech recognition pipeline
is fully functional.

Baseline: The noisy-baseline network starts with a 25%
higher WER on the clean test set than our clean-baseline
network. For SNRs lower than 25dB, the noisy-baseline is
significantly more noise robust. The WER seems to drastically
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TABLE III
ABSOLUTE WER [%] ON SINGLE SNRS AFTER DECODING. PRINTED BOLD: LOWEST WER.

Testing against pink noise
Method / SNR[dB] clean 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 -5.0 -10.0 -15.0 -20.0
Clean-baseline 13.8 14.4 14.0 13.8 13.7 13.7 16.1 18.9 25.9 40.1 61.8 86.4 109.0 133.4 147.2 152.8
Noisy-baseline 17.3 17.4 17.3 16.9 16.5 16.4 16.2 16.8 19.0 23.4 36.5 59.8 90.0 116.2 126.7 129.5
Gauss 15.7 15.8 15.7 15.6 14.8 14.4 14.5 15.3 16.9 20.2 28.9 45.5 72.8 94.9 99.0 98.9
Vanilla-PEM 13.3 13.2 13.2 12.7 12.6 12.6 12.9 13.6 15.1 18.9 26.2 45.0 73.5 93.4 96.9 97.1
Gauss-PEM 13.6 13.5 13.6 13.4 13.2 12.6 12.4 12.8 14.2 17.0 22.3 37.6 66.3 90.2 95.9 96.8
ACCAN 15.9 15.8 15.4 15.3 15.0 15.0 15.2 15.9 16.1 18.5 22.9 33.7 58.8 85.9 95.6 96.2
ACCAN reversed 14.6 14.4 14.3 14.1 13.3 13.4 13.9 14.4 15.4 18.5 24.4 40.2 67.8 90.9 97.0 97.2

Testing against babble noise
Method / SNR[dB] clean 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 -5.0 -10.0 -15.0 -20.0
Clean-baseline 13.8 14.2 14.2 13.9 14.2 14.5 15.7 18.8 26.6 43.9 74.2 102.2 116.6 122.4 122.3 121.4
Noisy-baseline 17.3 17.1 16.9 16.7 16.1 15.7 15.8 17.8 23.1 35.5 60.6 94.1 119.4 128.4 129.3 129.2
Gauss 15.7 15.6 15.7 15.7 15.3 15.0 15.4 16.5 19.5 27.5 45.9 77.4 102.6 109.0 109.8 110.6
Vanilla-PEM 13.3 13.2 12.9 12.7 12.3 12.7 12.8 14.0 17.4 25.6 44.2 72.7 93.2 99.1 99.5 99.8
Gauss-PEM 13.6 13.8 13.7 13.4 13.4 13.3 13.7 14.6 16.9 22.9 37.4 64.1 89.8 97.3 97.3 97.4
ACCAN 15.9 15.7 15.3 14.9 15.1 15.1 15.0 15.5 17.5 21.8 33.4 57.2 86.1 97.2 98.8 99.1
ACCAN reversed 14.6 14.4 14.2 14.0 14.1 14.0 14.0 14.6 16.5 21.9 35.5 63.5 88.7 96.6 97.6 97.6

increase at 25dB for the clean-baseline, while the noisy-
baseline sees the increase at a lower 10dB SNR. However, all
other methods outperform the noisy-baseline by a significant
margin at high and low SNRs.

Vanilla-PEM vs Gauss: Compared to the noisy-baseline,
Vanilla-PEM achieves a 23% decrease in WER on high SNR,
while Gauss only reduces WER by 15% (both pink noise
and babble noise). This results in vanilla-PEM being able to
outperform the clean-baseline on clean speech, while Gauss is
not able to do the same. On low SNR, both methods reduce
WER by around 20% on the pink noise test set. On babble
noise, PEM results in a higher 22.5% WER decrease compared
to the 15.5% decrease provided by Gauss.

Gauss-PEM: The Gauss-PEM method achieves the over-
all lowest WER on the high and low SNR range. It beats the
noisy-baseline method by between 26.5% and 28.7% on high
SNR, on low SNR and on the ROI for both pink noise and
babble noise. The results on the high SNR range are notable:
Gauss-PEM is able to outperform the clean-baseline network
at every single SNR step in the high SNR range, even on
clean speech. The network is much more noise robust while at
the same time it even improves clean speech scores. Around
35dB to 25dB, Gauss-PEM (other methods, too) reaches its
minimum WER. This is expected, as the mean SNR of the
training SNR range is 25dB and the network seems to optimize
for SNR levels close to this value [16].

B. Curriculum learning

To further increase the noise robustness, we developed
a curriculum learning strategy for the Gauss-PEM method,
resulting in our novel ACCAN method. We compare our
results to Gauss-PEM, as this was the most noise robust
non-curriculum method. Our test results show increased noise
robustness for ACCAN on pink noise and babble noise: the
WER decreases between 3.3% (ROI, pink noise) and 4.1%
(ROI babble noise). For pink noise, the biggest decrease is seen
at 0dB (10.5% WER decrease) and -5dB (11.3% decrease). For

babble noise, the biggest WER decreases are found at 10dB
(4.9%), 5dB (10.9%) and 0dB (10.7%).

The average WER of ACCAN on the high SNR range
is worse on pink noise (relative 8.8% increase in WER),
but better on babble noise (relative 0.4% decrease in WER).
Ultimately, the absolute WER in clean speech of ACCAN
(15.9%) is better than the noisy-baseline (17.3%) but worse
than Gauss-PEM (13.6%).

V. DISCUSSION

All proposed training methods lead to networks with in-
creased noise robustness in the low SNR range in comparison
with the standard noisy-baseline method. The noise robustness
is increased on a network level and it does not rely on complex
preprocessing frameworks.

We see increased noise robustness against both tested noise
types. This is remarkable, as the networks only saw the pink
noise type during training. The results show that waveform-
level noise mixing (PEM) is especially strong in transferring
noise robustness to noise types not seen in training. The
feature level noise addition (Gauss) is less effective on unseen
noise types. Also, PEM enabled us to train noise robust
networks that - at the same time - achieve lower WER on
clean speech than a network trained only on clean speech.
The uncompromising data augmentation by PEM should be
a decisive factor to achieve these results. While the noisy-
baseline trained on 1.7GB of unique data (waveform level), the
PEM-enabled networks trained on up to 408GB (240 epochs
for ACCAN * 1.7GB) of unique training data (waveform
level). By permanently sampling different noise segments, we
force the network to not rely only on constant noise features
for classification, but to develop a better internal representation
of the speech data. This representation could be refined further
by using other noise types besides pink noise for training, such
as babble noise, street noise, restaurant noise. Also, SNR steps
smaller than 5dB could be used to allow more than 11 different
SNR levels during training.
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PEM enabled us to dynamically change the SNR during
training. This facilitated the implementation of our novel
ACCAN training strategy, that achieved the best noise robust-
ness performance. The multi-stage training starts at low SNRs,
where annealed networks are able to explore the parameters
space with moderate influence of the speech signal. During
gradual exposure to higher SNRs in the training process,
accordion annealed networks refine their internal model of
speech step by step, while they seemingly acquire higher
noise robustness at the lower SNR levels. The inverse way of
going through the SNR range does not yield increased noise
robustness. The immediate presence of clean speech signals
seems to force the network to converge faster to a complex
acoustic model instead of exploring the parameter space.

VI. CONCLUSION

This work proposes new training methods for improving the
noise robustness of RNNs for a LVCSR task. The networks are
trained for a wide SNR range with the use of the Vanilla-PEM
training method which adds noise at the waveform level and
the Gauss method which injects Gaussian noise at the feature
level. By combining the Gauss and Vanilla-PEM methods into
the Gauss-PEM method, we achieve on average a 28% WER
reduction on the 20dB to -10 dB SNR range when compared
to a conventional multi-condition training method. At the same
time, we achieve lower WER on clean speech than a network
that is trained solely on clean speech. The ACCAN training
strategy enhances the Gauss-PEM method with a curriculum
learning strategy. The ACCAN training strategy results in
performance up to 11.3% lower WER at low SNRs compared
to Gauss-PEM method.
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