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Abstract—We present a novel approach for epoch estimation 

from the simple observation of the speech spectrum. 

Fundamental frequency (F0) of the speech signal and local 

variations around F0 are the characteristics of glottal excitation 

source. Extraction of this information from the speech spectrum 

can be used to estimate epochs (since higher harmonics interact 

with the vocal tract characteristics, they no longer represent the 

true glottal source). In this paper, we bandpass filter the speech 

signal through a novel Gaussian filterbank followed by simple 

peak detection to extract epochs. We do not attempt any post 

processing to study the effectiveness of F0 on epoch estimation in 

the proposed method. The algorithm is validated on various 

databases and compared with four state-of-the-art methods. The 

method has shown better or comparable results on the clean 

speech and found to be highly robust to the additive white noise 

giving highest IDR at various SNR levels.  

Keywords- Glottal closure instant (GCI), epoch, fundamental 

frequency(Fo), spectrum. 

I.  INTRODUCTION 

According to the source-filter model of speech production, 
a speech signal can be considered as an output of the time-
varying and quasi-stationary vocal tract system excited with a 
glottal source that generates a sequence of glottal pulses [1]. 
The glottal airflow is spectrally shaped by the vocal tract to 
produce a speech signal [1]. Simplicity of the source-filter 
model is that it allows incorporating radiation at lips, which is 
modeled by differentiation operator, with the glottal excitation 
source [1]. Therefore, for voiced speech as the glottis closes 
suddenly, the derivative of the glottal flow excites the vocal 
tract with strong impulse-like spikes [2]. The time instants 
corresponding to these impulses are called as Glottal Closure 
Instants (GCIs) or epochs. In addition, sudden closure of the 
glottis leads to the burst of energy which is manifested as the 
sharp changes in amplitude of speech signal around GCIs. 
Therefore, voiced speech can be modeled as convolution of the 
impulse response of the vocal tract system with the impulse-
like excitation signal (due to sudden closure of glottis) which 
has impulses (i.e., singularity function) located at epochs [3]. 

Accurate and robust estimation of GCIs is important in 
deriving source-based features in many applications like text-
to-speech synthesis (TTS), prosody modification, glottal source 
estimation, speaker recognition, voice conversion, etc [4].  In 
addition, epochs are necessary for the accurate analysis of the 
speech signal to extract dynamic characteristics of the vocal 
tract [2]. Therefore, many signal processing techniques has 

been developed for estimation of epochs employing different 
approaches for preprocessing of the speech signals. Linear 
prediction (LP) analysis combined with some preprocessing 
such as epoch filtering of linear prediction residual (LPR) [5], 
unwrapped phase spectrum of short-time Fourier Transform 
(STFT) of LPR [6], Hilbert envelope of LPR and group delay 
function [7], has been found useful for epoch estimation. 
Methods like YAGA [8], DYPSA [9] have employed dynamic 
programming to reduce the insertions suffered by group delay-
based methods. The approaches like ZFR [4], SEDREAMS 
[10] and recently proposed novel filtering- based approach 
(FBA) [11] use smoothing of the speech signal to detect epoch 
locations, getting rid from parameter settings required in LP 
analysis. However, the performance of ZFR and SEDREMS 
depend on accuracy of average pitch period estimation, which 
might fail in severely degraded noisy conditions. Therefore, 
estimation of epochs is a challenging task if average pitch 
period is unknown and hence, study reported in [12] proposes 
dynamic plosion index (DPI)-based epoch extraction algorithm. 
Even though it is threshold-independent, its performance might 
be affected by the erroneous estimation of the integrated linear 
prediction residual (ILPR) [13]. The method exploiting phase 
spectral characteristics of the speech signal has been proposed 
for epoch extraction which models the phase spectrum as an 
allpass filter [14]. In [15], an approach based on subband 
analysis of LPR is presented. Recently, [16] considers voiced 
speech segments as a spectra and then exploits group delay 
spectra to locate GCI candidates.    

In this paper, we propose a novel approach for epoch 
estimation which uses a Gaussian filterbank to bandpass filter 
the fundamental frequency (Fo) component of the speech signal 
and the local frequency variations around Fo. The discrete 
Fourier transform (DFT) of the impulse train (with period T0) is 
a train of impulses located at Fo (=1/T0) and its harmonics. It 
implies that the Fo of the speech signal is an inherent property 
of the excitation source. In addition, higher pitch harmonics of 
the speech signal no longer represent true source characteristics 
because of their strong interaction with the vocal tract formants 
[4]. Therefore, extraction of Fo can be useful for epoch 
estimation. This idea forms the basis of the proposed approach. 

The rest of the paper is organized as follows: Section 2 
explains the motivation for this work, section 3 details the 
proposed approach. In section 4, details of the databases used 
for evaluation and the experimental setup, are discussed. In 
section 5, performance of the proposed method is analyzed. 
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II. SIGNIFICANCE OF THE FO OF SPEECH SIGNAL FOR EPOCH 

ESTIMATION 

Figure 1 illustrates how the epoch-related information is 

embedded in Fo  and the local frequency variations around Fo. 

Figure 1(c) shows the synthetic speech signal s[n] obtained by 

passing the impulse train (shown in Figure 1(a)) through a 

cascade of four 2
nd

 order resonators with center frequencies 

(corresponding to first four formants) 500Hz, 1075Hz, 2463Hz, 

3558Hz (r=0.99 for narrow -3dB bandwidth) [1]. Figure 1(d) 

shows that the magnitude spectrum of the synthetic signal 

consists of peaks at Fo = 80Hz and its harmonics with dominant 

peak around 500 Hz which is the frequency corresponding to 

the 1
st
 formant.   

 

Figure 1. A train of impulses with locally varying period, (b) its magnitude 

spectrum with Fo=80 Hz and its harmonics, (c) synthetic speech signal, (d) its 

magnitude spectrum, (e), (g), (i) are the real parts of the time domain signals 
with spectra as shown in (f), (h), (j). Red boxes highlight the F0. 

 

Now, assume that the spectrum consists of an impulse at Fo 

Hz, i.e., 0( ) ( ).F f f F   

Taking the inverse DFT we get, 02
( ) .

j F t
f t e


  

0     ( ( )) cos(2 ).Real f t F t 
 

Thus, we extracted the spectrum of the speech signal s[n] 
between 60 Hz-100 Hz and took real part of its inverse DFT 
which is shown the Figure 1(e). It can be observed that the 
resulting time-domain signal is sinusoidal in nature. In 
addition, the negative peaks of the resulting signal are able to 
capture the impulse locations accurately despite of varying 
pitch period of the impulse train. As shown in Figure 1(g), 
time-domain signal corresponding to Fo along with the 2

nd
 and 

3
rd

 harmonics shows the spurious zero-crossings between two 
consecutive impulse locations. Because the higher harmonics 
interact with the frequency response of digital resonator. 
Therefore, we claim that the fundamental component of the 
speech signal can be extracted to estimate the epoch locations. 
The reason behind taking range of the frequencies around Fo is 
to capture dynamic variations in the pitch period. Extracting a 
very narrow spectrum around F0 (Figure 1(j)) gives a time-
domain signal (Figure 1(i)) which is unable to capture local 

variations in the pitch period. Therefore, in this paper, we 
design a novel Gaussian filterbank to bandpass the Fo and local 
variations in frequency around Fo, for epoch extraction. 

III. PROPOSED ALGORITHM 

A. Pre-processing 

The speech signal s[n] was passed through a filterbank with 
L Gaussian linear time invariant (LTI) filters (as they exhibit 
optimal time-frequency resolution [17], [18]). Figure 2 shows 
the block diagram for the proposed approach. As a linear-phase 
FIR filterbank was used, corresponding subband filter outputs 
were summed to get y[n]. 
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Figure 2. Block diagram of the proposed filterbank for GCI detection. 

 

 
Figure 3. a) Magnitude responses of the L subband filters with f1=80 Hz and 

fL=200 Hz with fi+1-fi=10 Hz, i=1,…L-1,(b) equivalent magnitude response of 

the filterbank. 

 
DFT of the Gaussian window w[n] is a Gaussian and thus, 

has a fast decay in the frequency-domain implying smooth 
time-domain Gaussian window with continuous and bounded 
derivatives [17]. As multiplication with exponential in the 
time-domain results in shift in the frequency-domain, 
magnitude response |Hi(e

j2πf
)| of the i

th
 subband filter is 

Gaussian in nature centered at fi as shown in Figure 3(a). The 
center frequencies were spaced in steps of 10 Hz so that the 
frequency range f1-fL covered the F0 of the speech signal and 
variations around F0 excluding the second and higher 
harmonics. f1 and fL were decided by observing F0 from the 
spectrum of the speech signal. The parameters of the window 
w[n] were selected to be N=6071 and α=2.5 for Fs=32 kHz. 
The choice of parameters was to attain nearly constant gain 
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bandpass characteristics for equivalent magnitude response 
|H(e

j2πf
)| of the filterbank with sharp cut-off at f1 and fL as 

shown in Figure 3(b). As Hi(e
j2πf

) has causal spectrum, y[n] is 
analytic in time-domain (by duality property of DFT). 
Therefore, we take its real part to get sinusoidally varying 
signal z[n], 

 𝑧[𝑛] = 𝑅𝑒𝑎𝑙(𝑦[𝑛]). 

B. Peak detection 

 
Our experimental observations depicted that z[n] exhibits 

prominent negative peaks around true epochs along with some 
spurious peaks. To choose a negative peak which corresponds  
to true epoch, we take maximum negative peak of z[n] between 
two successive negative zero-crossings which makes the 
proposed algorithm threshold independent. In order to observe 
effectiveness of F0 on GCI detection, we do not employ any 
post-processing to eliminate spurious negative peaks. Figure 4 
illustrates the epoch estimation for a voiced speech segment. 

 

Figure 4. (a) A voiced speech segment of male speaker BDL [19], (b) filtered 

signal (f1=80 and fL=170 Hz) with dotted zero-crossings (black) and negative 
peaks (red), (c) upper trace-detected epochs, lower trace – delay adjusted 

differenced electroglottograph (EGG). 
 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The proposed algorithm was evaluated on CMU-ARCTIC 
[19] and MOCHA databases [20] which consist of speech 
signals along with electroglottograph (EGG) signals. The 
CMU-ARCTIC database (DB) consists of phonetically 
balanced utterances spoken by speakers SLT, JMK and BDL, 
TIMIT utterances spoken by KED speaker, a set of nonsense 
words containing all phone-phone transitions spoken by 
speaker RAB. MOCHA DB consists of a set of short sentences, 
uttered by male (M1) and a female (M2) speaker. Details of the 
databases are given in Table 1. The cut-off frequencies f1 and fL 
were selected by observing the spectra of few randomly chosen 
speech files for each speaker. As the range f1-fL to cover F0 and 
the local variations do not vary much for a particular speaker, 
they were kept same for all files of speaker. The maximum 
negative peaks in the derivative of the EGG (DEGG) were 
taken as reference epochs (i.e. the ground truth) after adjusting 
larynx-to-microphone delay of 0.7 ms for CMU DB [4]. 
Algorithms were evaluated in the voiced regions with voiced-
unvoiced decision made by applying threshold of 1/9 on 
maximum negative value of DEGG [12]. MOCHA speech and 
DEGG files were already synchronized and voicing decision 

was made by applying threshold of 1/6 on maximum positive 
value of DEGG after passing through 15-point moving average 
(MA) filter. The performance measures used for evaluation are: 
identification rate (IDR), miss rate (MR), false alarm rate (FA), 
identification accuracy (IDA) and accuracy to 0.25 ms (±0.25 
Acc.) as defined in [9]. All utterances were resampled at 32 
kHz. 

Table 1: Details of the databases used for evaluation 

 CMU-ARCTIC DB MOCHA DB 

Speaker SLT BDL JMK RAB KED M1 M2 

No. of utterances 1132 1131 1114 1946 424 460 460 

Gender F M M M M M F 

Native US US Canada UK US * * 

𝒇𝟏(𝑯𝒛) 100 80 80 70 80 70 100 

𝒇𝑳(𝑯𝒛) 250 170 170 120 140 160 300 
*Subjects have variety of accents of English language. 

 

Table 2: Comparison of the results on the clean speech signals 

Speaker Method 
IDR 

(%) 

MR 

(%) 

FA 

(%) 

IDA 

(ms) 

±0.25 

Acc.(%) 

BDL 

Proposed 96.65 0.08 3.27 0.36 69.76 

DPI 98.53 0.28 1.20 0.32 84.04 

ZFR 97.29 0.11 2.60 0.38 74.71 

SEDREAMS 98.44 0.41 1.15 0.42 81.81 

FBA 98.43 0.98 0.59 0.34 63.27 

JMK 

Proposed 99.50 0.03 0.47 0.60 33.48 

DPI 99.02 0.25 0.73 0.37 78.00 

ZFR 99.52 0.09 0.38 0.66 33.58 

SEDREAMS 98.89 0.65 0.46 0.65 67.24 

FBA 97.54 2.18 0.28 0.55 47.62 

SLT 

Proposed 99.20 0.01 0.79 0.21 79.37 

DPI 99.26 0.39 0.35 0.27 75.40 

ZFR 99.47 0.03 0.50 0.35 78.63 

SEDREAMS 99.46 0.06 0.48 0.32 73.00 

FBA 98.94 0.42 0.64 0.28 69.12 

KED 

Proposed 99.02 0.15 0.83 0.72 30.90 

DPI 99.30 0.14 0.56 0.23 96.79 

ZFR 99.38 0.07 0.55 0.68 31.92 

SEDREAMS 99.54 0.14 0.32 0.55 78.96 

FBA 92.06 2.52 5.42 0.91 65.10 

RAB 

Proposed 
99.03 0.06 0.90 0.78 29.63 

DPI 96.33 0.14 3.53 0.43 89.34 

ZFR 96.74 0.05 3.20 0.75 33.38 

SEDREAMS 97.43 0.05 2.52 0.69 76.73 

FBA 94.05 0.19 5.75 0.85 37.11 

M1 

Proposed 
96.43 2.72 0.95 0.84 29.43 

DPI 96.19 3.09 0.72 0.58 62.41 

ZFR 96.41 2.79 0.80 0.85 28.00 

SEDREAMS 96.15 3.20 0.65 0.70 46.89 

FBA 94.92 4.59 0.49 0.82 35.15 

M2 

Proposed 97.02 1.05 1.93 0.39 54.20 

DPI 96.87 2.88 0.26 0.29 77.44 

ZFR 97.87 1.38 0.75 0.40 38.49 

SEDREAMS 97.86 1.53 0.61 0.48 55.77 

FBA 97.02 1.05 1.93 0.39 54.20 

 

B. Performance Analysis 

Table 2 compares the performance of the proposed GCI 
estimation method on clean speech with three state-of-the art 
methods, DPI [12], SEDREAMS [10], ZFR [4] and our 
recently proposed FBA [11]. The evaluation was carried on 7 
speakers In addition, performance of the proposed algorithm 
was studied on the degraded speech signals, for its robustness 
against noise, at various Signal-to-Noise Ratio (SNR) levels.
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Table 3: Comparison of the epoch extraction techniques for additive white noise at various SNR levels averaged over 7 speakers. 
 Proposed DPI ZFR SEDREAMS FBA 

SNR(dB) -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 

IDR (%) 94.4 96.6 97.6 97.9 83.6 91.2 95.5 97.0 92.7 95.8 97.2 97.8 86.4 93.1 96.7 97.8 78.2 85.7 91.2 94.0 

MR (%) 1.52 0.92 0.74 0.66 8.52 4.61 2.21 1.33 4.43 2.28 1.32 0.91 12.1 5.84 2.39 1.25 6.72 5.22 3.36 2.41 

FA (%) 4.13 2.50 1.68 1.41 7.91 4.15 2.31 1.63 2.84 1.96 1.50 1.31 1.56 1.06 0.92 0.91 15.1 9.08 5.46 3.58 

IDA (%) 0.90 0.73 0.63 0.58 0.96 0.65 0.48 0.43 1.14 0.80 0.65 0.62 1.40 1.10 0.85 0.73 1.05 0.82 0.71 0.64 

±0.2 Acc. 30.1 36.6 41.5 44.2 38.9 54.5 63.8 67.8 28.2 37.2 42.9 45.8 19.3 26.9 36.45 45.3 34.3 44.6 50.3 51.5 

 

Table 4: Comparison of the epoch extraction techniques for babble noise at various SNR levels averaged over 7 speakers. 
 Proposed DPI ZFR SEDREAMS FBA 

SNR(dB) -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 -10 -5 0 5 

IDR (%) 83.5 88.4 92.8 95.8 71.0 77.7 85.6 92.4 83.8 88.1 92.3 95.3 82.7 88.5 93.1 96.2 70.6 75.8 82.0 88.2 

MR (%) 3.36 2.21 1.26 0.83 11.6 9.53 6.58 3.71 6.99 5.42 3.54 2.13 12.5 8.39 4.93 2.43 9.20 8.25 6.97 5.10 

FA (%) 13.2 9.42 5.93 3.37 17.4 12.8 7.79 3.94 9.26 6.52 4.17 2.53 4.80 3.10 2.02 1.36 20.2 16.0 11.01 6.69 

IDA (%) 1.27 1.08 0.90 0.74 1.62 1.31 0.89 0.61 1.47 1.20 0.92 0.72 1.56 1.27 0.96 0.76 1.53 1.27 1.00 0.79 

±0.25Acc. 17.9 22.6 28.4 35.1 19.5 28.6 52.6 63.3 17.1 22.8 29.5 36.2 17.3 26.3 42.4 51.3 19.0 25.5 35.4 45.1 

 

For this purpose, a noise sample from NOISEX-92 DB added 
to every utterance at respective SNRs [21]. Tables 3 & 4 
illustrate the comparison of  performances of four methods 
averaged over seven speakers for various SNR levels. ZFR and 
SEDREAMS were provided with mean pitch period from the 
clean speech for noisy evaluations. 

The proposed method outperforms all the existing methods 
in terms of relatively least MR for several speakers and in 
terms best IDR for RAB, M1 & M2 whereas gives almost 
comparable IDR for BDL,JMK & SLT. DPI gives lowest IDA 
for all speakers except SLT. The proposed method and ZFR 
give low ±0.25 Acc. for few cases. This is because these 
methods do not refine the estimated epoch locations using LPR 
or voice source [12]. The combined effect of MR and FA 
reflects on the IDR, both being the least, give the higher IDR. 
So when the IDRs are averaged over all the speakers (Table 5) 
then the proposed method gives highest IDR after 
SEDREAMS. It can be observed that the proposed method 
gives relatively higher FA for the speaker BDL. The proposed 
method is found to be noise robust giving the best IDR and 
least MR at various SNRs for additive white noise. For babble 
noise, it gives the least MR with slightly less IDR than the best. 

Table 5: Performance measures averaged over all the speakers 

All 

Method IDR MR FA IDA ±0.25 Acc. 

Proposed 98.12 0.59 1.31 0.56 46.68 

DPI 97.93 1.02 1.05 0.36 80.49 

ZFR 98.10 0.65 1.25 0.58 45.53 

SEDREAMS 98.25 0.86 0.88 0.54 68.63 

FBA 95.49 2.17 2.33 0.63 52.38 

 

Figure 5 illustrates the significance of the frequency 
variations around F0 in detail on the GCI estimation. It is 
evident from Figure(a) and its zoomed versions (as shown in 
(b), (c)) that the F0 of the speech signal (for BDL male) falls 
roughly within 80-160 Hz. The IDR is maintained above 99 % 
for 140<fL (Hz)<170 with f1 =80 Hz whereas immediately starts 
to decrease for fL>170 Hz. In addition, Figure 5(e) shows the 
IDR variation for utterance of female speaker (SLT) where 
IDR remains above 99% for 200<fL(Hz)<290. Hence, the 
proposed approach estimates GCIs with simple observation of 
spectrum followed by subband filtering and peak detection 
which is threshold independent. 

 

 

Figure 5. Illustration of the significance of F0 on IDR, (a) magnitude spectrum 

of a male (BDL) speech utterance, (b)-(c) zoomed portions of (a), (d) variation 
in IDR with fL varying from 120 Hz-240 Hz and f1=80 Hz, (e) variation in IDR 

with fL varying from 150 Hz-450 Hz and f1=100 Hz, for a speech utterance of 

female (SLT). 

I. SUMMARY AND CONCLUSIONS 

  

In this paper, a novel approach based on simple observation of 

the speech spectrum is presented which extracts F0 of the 

speech signal using a Gaussian filterbank. The proposed 

method is found to be better or comparabale than existing 

state-of-the-art methods and working well on wide range of 

databases giving best or comparable results in severe additive 

noisy conditions at various SNR levels. Therefore, extraction 

of F0 and variations around F0 from the speech spectrum is 

useful for epoch estimation and is illustrated without post-

processing and a threshold-independent approach. Our future 

research will be directed towards validation of the proposed 

method on extracting GCIs from singing voice and robustness 

evaluation for additional noisy environments. 
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