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Abstract—Distributed compressive sensing is a framework

considering jointly sparsity within signal ensembles along with

multiple measurement vectors (MMVs). The current theoretical

bound of performance for MMVs, however, is derived to be the

same with that for single MV (SMV) because the characteristics

of signal ensembles are ignored.
In this work, we introduce a new factor called “Euclidean

distances between signals” for the performance analysis of a

deterministic signal model under MMVs framework. We show

that, by taking the size of signal ensembles into consideration,

MMVs indeed exhibit better performance than SMV. Although

our concept can be broadly applied to CS algorithms with

MMVs, the case study conducted on a well-known greedy solver,

called simultaneous orthogonal matching pursuit (SOMP), will be

explored in this paper. We show that the performance of SOMP,

when incorporated with our concept by modifying the steps

of support detection and signal estimations, will be improved

remarkably, especially when the Euclidean distances between

signals are short. The performance of modified SOMP is verified

to meet our theoretical prediction.

I. INTRODUCTION

A. Background & Related Works

Compressive sensing (CS) [1], [2] of sparse signals in

achieving data acquisition and compression simultaneously has

been extensively studied. Conventionally, given a measurement

vector, CS shows that a sparse signal can be reconstructed

via different solvers such as `1-minimization [3], [4] or

greedy approaches [5], [6]. To further reduce the number

of measurements, distributed compressive sensing (DCS) [7],

[8] is a framework considering jointly sparsity within signal

ensembles along with multiple measurement vectors (MMVs).

The model of MMVs is described as follows. Let X =
[x1, x2, ..., xL] ∈ R

N×L be the signal ensembles, where L ≥
1 is the size of signal ensembles, and let Φi ∈ R

M×N for

1 ≤ i ≤ L be a sensing matrix. X is called jointly K-sparse if
∣

∣

∣

⋃L

i=1 supp
(

xi
)

∣

∣

∣
= K , where supp

(

xi
)

returns a support set

of xi and |·| is the cardinality function. Then, signal sampling

is conducted via:
yi = Φixi. (1)

Another common formulation assumes Φ = Φ1 = . . .ΦL.

Therefore, let Y = [y1, y2, ..., yL], we have:

Y = ΦX. (2)

When Φi’s for all i’s are drawn from i.i.d Gaussian random

variables, a difference between the above two formulations

is that rank(Y ) = min(L,M) in Eq. (1) but rank(Y ) =
min(rank(X),M) in Eq. (2) with probability one.

Conventionally, the performance analysis can be classified

into two categories: stochastic signal model or deterministic

signal model. Stochastic signal model often assumes that

either Φ or x is random so that the theoretical result involves

probability. In contrast, deterministic signal model does not

require this assumption and is unrelated to probability.

Furthermore, in the stochastic signal model, DCS [8] shows

the fundamental bounds on the number of noiseless measure-

ments such that signals can be jointly recovered based on Eq.

(1). In addition, DCS shows that supports can be detected

correctly with probability one when L → ∞. In other words,

DCS cannot accurately characterize the relationship between

L and the performances of solvers such as SOMP [9]. For

Eq. (2), [10] focuses on the average case analysis based

on random matrix. [11] studies signals with a sparse fusion

frame representation and provides a probabilistic analysis. [12]

uses conic geometric for the performance analysis. Basically,

[8]∼[12] show that the performance is proportional to L.

In the deterministic model based on Eq. (2), most of works

[13], [14], [15] show that the performance is proportional to

rank(Y ) with noiseless measurements. In fact, if the perfor-

mance analysis in MMVs does not consider rank(Y ) as a

factor, the analysis will be same as that in SMV. For example,

[16] shows the performance of SOMP that is irrelevant to L,

which is almost the same with OMP (a special case of SOMP

with L = 1) [17]. This is because multiple sensors sense

the same source with x1 = x2 = . . . = xL such that Eq.

(2) is degraded into SMV due to rank(Y ) = 1. In addition,

whatever the signal ensembles are, rank(Y ) = min(L,M)
based on Eq. (1) always holds. However, signal ensembles

actually affect the performance in Eq. (1). For example, when

x1 = x2 = . . . = xL, the performance based on Eq. (1)

still is improved [18] since Eq. (1) can be reformulated as the

following SMV formulation :

ŷ = Ax̂, (3)

where ŷ =
[

y1; y2; . . . ; yL
]

∈ R
ML, A =

[

Φ1; Φ2; . . . ; ΦL
]

∈
R

ML×N , and x̂ = x1 = . . . = xL. Clearly, the performance

of Eq. (3) will be better along with the increase of L since

the number of measurements is ML.
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B. Motivation

The discussions so far motivate us to consider a question:

how to characterize the performance of DCS based on Eq.

(1), especially when signals’ strengths are different but close to

each other. Since rank no longer characterizes the performance

accurately in the DCS framework, here, we consider “Eu-

clidean distances between signals are nonzero”. It is noted that

the Euclidean distances considered in this paper include two

parts: one is ‖xi − x∗‖2 for all i’s with x∗ = 1
L

∑L

i=1 x
i and

another one is ‖xi‖2 for all i’s. Specifically, if the assumption

that either ‖xi − x∗‖2 is small for any i or ‖xi‖2 approaches

to ‖xj‖2 holds for all i 6= j exists, the performance will be

good based on Eq. (1). Such an assumption is practical and

occurs in cooperative spectrum sensing [19], where MMVs

are obtained from different sensors to observe a single signal

source (spectrum). Under the circumstance, when the sensors

are too close to each other, the observed signal spectra also

are similar, implying that distances between signals are short.

C. Contributions

In this paper, we are interested in the performance analysis

of deterministic MMVs model in Eq. (1). Compared with

previous works using rank, the novel factor with “Euclidean

distances between signals” will reveal that the performance is

related to the size L of signal ensembles. We take SOMP as

a case study here even though our concept can be generally

applied to other greedy algorithms. More specifically, we

present a new mechanism for support detection and derive the

sufficient condition of correct support detection. We show that

when the Euclidean distance between signals are short or the

signals have the same sign, the new mechanism outperforms

conventional method remarkably. In terms of signal estimation,

individual sparse signal is conventionally estimated by its

corresponding measurement vector. In our work, however, we

explore a strategy of estimating an individual signal from all

measurement vectors and show that this strategy is potential to

make support detection possible even when M < K ≤ ML.

II. PRELIMINARIES

For a matrix H , we denote its transpose by HT and its

pseudo inverse matrix by H†. For a set V collecting indices,

HV is a submatrix formed by columns of H with indices

belonging to V . P(V ) is the power set of V . For a vector u,

the ith entry of u is u[i]. uV ∈ R
|V | is a vector formed by

entries of u with indices belonging to V . ‖·‖p denotes the `p-

norm. sign(u) extracts the sign of u. |u| returns the absolute

value of u. Denote Ω =
⋃L

i=1 supp
(

xi
)

as the ground truth of

support set. N (0, σ2) denotes a normal distribution with zero

mean and variance σ2.

III. MAIN RESULTS

To induce the new factor “Euclidean distance between

signals” into the theoretical performance analysis of MMVs

and see how many advantages we can have, we take SOMP

as a case study here (but keep in mind that our idea can be

generally applied to other greedy algorithms). In the following

procedure of SOMP, the steps of support detection and signal

estimation contain the original ones ((a) and (c)) and the newly

added one ((b) and (d)) as alternative of the former.

1) Initialization: t = 1, S = { }, and ri,t = yi for i =
1, . . . , L.

2) Support detection:

(a) I = argmaxi u[i] with u =
∑L

j=1

∣

∣(Φj)T rj,t
∣

∣

(b) I = argmaxi u[i] with u =
∣

∣

∣

∑L

j=1(Φ
j)T rj,t

∣

∣

∣
.

3) Support update: S = S
⋃{I}.

4) Signal estimation:

(c) x̂i = (Φi
S)

†yi with i = 1, . . . , L
(d) x̂i = (AS)

†ŷ with i = 1, . . . , L, where AS =
[

Φ1
S ; Φ

2
S ; . . . ; Φ

L
S

]

∈ R
ML×K .

5) Residual update: ri,t+1 = yi −Φi
S x̂

i with i = 1, . . . , L.

6) If t = K , stop and output x̄i
S = (Φi

S)
†yi with i =

1, ..., L; otherwise, t = t+ 1 and go to Step 2.

In the above procedure, SOMP-(a+c) denotes the traditional

SOMP by choosing (a) as support detection and (c) as signal

estimation. In contrast, steps (b) and (d) are proposed as alter-

native of steps (a) and (c) to accommodate for the conditions

that the Euclidean distances between signals are short or the

signals have the same sign, as mentioned in Sec. I-B.

We first explain why we present (b) as an alternative of

(a) in certain situations. In the first iteration of steps (a) and

(b), we expect that u[j] for j ∈ Ω is large enough to make

support detection correct. We derive the lower bounds of u[j]
for j ∈ Ω in steps (a) and (b), respectively, as follows:

(a) : u[j] =
L
∑

i=1

∣

∣(Φi
j)

T ri,1
∣

∣ =
L
∑

i=1

∣

∣xi[j] +
(

(Φi
j)

TΦi
Ω − 1

)

xi
Ω

∣

∣

≥
L
∑

i=1

∣

∣xi[j]
∣

∣−
L
∑

i=1

∣

∣

(

(Φi
j)

TΦi
Ω − 1

)

xi
Ω

∣

∣

(b) : u[j] =

∣

∣

∣

∣

∣

L
∑

i=1

(Φi
j)

T ri1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

L
∑

i=1

xi[j] +

L
∑

i=1

(

(Φi
j)

TΦi
Ω − 1

)

xi
Ω

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

L
∑

i=1

xi[j]

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

L
∑

i=1

(

(Φi
j)

TΦi
Ω − i

)

xi
Ω

∣

∣

∣

∣

∣

.

If sign(x1) = . . . = sign(xL), we have
∑L

i=1

∣

∣xi[j]
∣

∣ =
∣

∣

∣

∑L

i=1 x
i[j]

∣

∣

∣
and

∑L

i=1

∣

∣

(

(Φi
j)

TΦi
Ω − 1

)

xi
∣

∣ ≥
∣

∣

∣

∑L

i=1

(

(Φi
j)

TΦi
Ω − I

)

xi

∣

∣

∣
. It is easy to derive that (b)

achieves more accurate support detection than (a) under the

case that all signals have the same sign. We will further

integrate this assumption into our performances analysis later.

Second, we discuss why we present (d) as an alternative of

(c). In this paper, steps (b+d) is equivalent to solving Eq. (3)

when x1 = x2 . . . = xL. Compared with (c), (d) is potential to

make support detection possible when M < K ≤ ML since

the number of measurements in Eq. (3) is ML. In other words,

no matter what L is, there are infinite solutions to the least
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square problem with M < K and, thus, (c) fails to estimate

the signal correctly. On the other hand, when ‖xi − xj‖ ≤ ε
for all i 6= j with small ε, (b+d) is no longer formulated as

SMV in Eq. (3). On the contrary, we show that SOMP-(b+d)

conducted with Eq. (1) still works when M < K ≤ ML.

To begin with the performance analyses of SOMP-(a+c),

SOMP-(b+c), and SOMP-(b+d), we first introduce restricted

isometric property (RIP) as follows.

Lemma 1. (RIP)

Let Φ ∈ R
M×N . Suppose that there exists a constant δ|I|(Φ) <

1 such that for any x ∈ R
|I| and any I ⊂ Ω,

(1− δ|I|(Φ))‖x‖22 ≤ ‖ΦIx‖22 ≤ (1 + δ|I|(Φ))‖x‖22 (4)

holds. The matrix Φ is said to satisfy the |I|-restricted isometry

property with restricted isometry constant (RIC) δ|I|(Φ).

When Φ satisfies RIP, the following consequence always holds.

Lemma 2. (Consequence of RIP [20])

Given a matrix Φ, for I ⊂ Ω, if δ|I|(Φ) < 1, then, for any

x ∈ R
|I|, we have

(1− δ|I|(Φ))‖x‖2 ≤ ‖ΦT
I ΦIx‖2 ≤ (1 + δ|I|(Φ))‖x‖2. (5)

According to RIC, OMP recovers all K-sparse vectors

provided Φ satisfies the sufficient condition that δK+1(Φ) <
1√
K+1

[17], [21]. Similarity, traditional SOMP-(a+c) with sig-

nal ensembles sensed via Eq. (2) needs to satisfy δK+1(Φ) <
1√
K+1

or δK(Φ) <
√
K−1√

K−1+
√
K

[16]. Nevertheless, as men-

tioned in Sec. I-A, the sufficient condition never contains L
due to no assumption about signal ensembles was made. In

addition, it should be noted that this sufficient condition [16]

cannot be applied to SOMP-(a+c) with Eq. (1). On the other

hand, DCS focuses on SOMP-(a+c) with Eq. (1) [7], [8] but

it does not prove such a sufficient condition. Thus, in addition

to conducting analyses for SOMP-(b+c) and SOMP-(b+d), we

also provide analysis for SOMP-(a+c).

To induce L into the sufficient condition of SOMP with

signal ensembles being sensed via Eq. (1), our main results are

summarized as the following three theorems. Due to limited

space, we only show the proof of Theorem 2 here. Please refer

to our complete version in arXiv1 for other proofs.

Theorem 1. Suppose xi ∈ R
N is a K−sparse signal sensed

via Eq. (1) for i = 1, . . . , L and Φi’s satisfy RIP. Then, the

SOMP-(a+c) algorithm will perfectly reconstruct xi’s if

L
∑

i=1

ε1δ
2
K+1(Φ

i)− (
√
K + 2ε1)δK+1(Φ

i) + ε1

1− δK+1(Φi)
> 0, (6)

where ε1 = max
U∈P(Ω)\∅

minj ‖xj
U‖2

maxj ‖xj
U‖2

.

Theorem 2. Let A =
1√
L
[Φ1; Φ2; . . . ; ΦL] and let δmax

K =

maxi δK(Φi). Suppose xi ∈ R
N is a K−sparse signal sensed

1http://arxiv.org/abs/1609.01899

via Eq. (1) and Φi satisfies RIP for i = 1, . . . , L. Then, the

SOMP-(b+c) algorithm will perfectly reconstruct xi’s if
(√

K + 1
)

δK+1(A)+
(

1 +
(√

K + 1
)

(Lε2 + η)
)

δmax
K+1 < 1,

(7)

where ε2 = max
U∈P(Ω)\∅

∑L

i=1 ‖xi
U − x∗

U‖2
L‖x∗

U‖2
, x∗ = 1

L

∑L

i=1 x
i,

and η = δmax
K+1 − δK+1(A).

Proof. Please see Appendix in Sec. VI for detailed proof.

Theorem 3. Let A =
1√
L
[Φ1; Φ2; . . . ; ΦL] and let δmax

K =

maxi δK(Φi). Suppose xi ∈ R
N is a K−sparse signal sensed

via Eq. (1) for i = 1, . . . , L, and A satisfies RIP with K ≤ M .

Then, the SOMP-(b+d) algorithm will perfectly reconstruct

xi’s with i = 1, . . . , L if
√
K(1 + L2ε3)δK+1(A) + (1 + Lε3)δ

max
K+1 < 1, (8)

where ε3 = max
U∈P(Ω)\∅

∑L

i=1 ‖xi − x∗‖2
L‖x∗

U‖2
with x∗ =

1
L

∑L

i=1 x
i.

In the above three theorems, ε1, ε2, and ε3 describe the char-

acteristics of involved signal ensembles, respectively. First,

among them, Theorem 1 shows that when the entries of

xi’s have the same energy (unrelated to sign(xi)’s), we have

ε1 = 1 and SOMP-(a+c) performs best. On the other hand,

the analysis is derived for SOMP-(a+c) without considering

signal ensembles as follows.

Corrollary 1. Let δmax
K = max

i
δK(Φi). Other assumptions

follow Theorem 1. Then, the SOMP-(a+c) algorithm will

perfectly reconstruct xi’s with i = 1, . . . , L if

δmax
K+1 <

1√
K + 2

.

In comparison with Theorem 1, the result of Corollary 1

even is worse than SMV since δmax
K+1 is the maximum among

δK(Φi)’s and is increased with L > 1. However, when ε1 = 1,

δmax
K+1 < 1√

K+2
is one of solutions to satisfy (6) in Theorem

1. In fact, Theorem 1 requires that the mean of δK+1(Φ
i)’s

instead of δmax
K+1 is small.

Second, as shown in Theorem 2, ε2 indicates that xi’s should

be distributed around the center x∗, which should be far away

from the origin. In other words, xi’s have the same sign to

maximize the denominator of ε2. To fairly compare Theorem

1 and Theorem 2, we need to build the relationship between

δK(A) and δK(Φi). In fact,
√
LδK(A) ∼ δmax

K+1. In addition,

a random matrix is known to satisfy δcK < θ with high

probability provided one chooses M = O( cK
θ2 log N

K
) [22].

Then, it is trivial to check that when ε1 = 1, ε2 = 0 (the

best case for both theorems), and L = K , the number of

measurements required in Theorem 1 is about O(K) larger

than that in Theorem 2.

Finally, we note that the desired signal ensembles for both

the cases of ε2 and ε3 are the same. Since the numerator in ε3
is fixed, it implies that ε2 ≤ ε3. However, it should be noted
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Fig. 1. Performance analysis for different types of signals: (a) Type I; (b)
Type II; (c) Type III; (d) Type IV, under L = 3 and N = 100. The curve
denotes the phase transition of probability of success achieving 50%. The
region above the curve means the probability ≥ 50%.
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Fig. 2. Performance analysis for different types of signals: (a) Type I; (b)
Type II; (c) Type III; (d) Type IV, under L = 9 and N = 100.

that, when ε2 = ε3 = 0, the sufficient condition in Theorem

3, compared with that in Theorem 2, is slightly relaxed. In

addition, the assumption in Theorem 3 only requires that

A, instead of all Φi’s, satisfies RIP and that K ≤ M .

Thus, even though individual Φi does not satisfy RIP, perfect

reconstruction is still possible. The following corollary shows

that K ≤ M can be further removed for perfect support

detection.

Corrollary 2. Suppose A satisfies RIP. Then, the SOMP-

(b+d) algorithm perfectly detects the support set of xi’s for

i = 1, . . . , L with the same sufficient condition in Theorem 3.

IV. EXPERIMENTS

In this section, we validate our three theorems from empir-

ical simulations. We first randomly pick a support set Ω with

|Ω| = K . Then, four types of signal ensembles are generated

as follows. For all j ∈ Ω, we have

I. xi[j] ∼ N (0, 1) with i = 1, . . . , L.

II. xi[j] ∼ |N (0, 1)| with i = 1, . . . , L.

III. xi[j] ∼ N (1, 0.25) with i = 1, . . . , L.

IV. xi[j] = 1 with i = 1, . . . , L.

For j 6∈ Ω, xi[j] = 0. Then, Φi’s are standard normal matrices.

We run SOMP-(a+c), SOMP-(b+c), and SOMP-(b+d) to obtain

x̄i’s and declare success if
∑L

i=1 ‖x̄i − xi‖ ≤ 10−5. The

successful probability is the number of successes divided by

100.

These types of signals present different values of ε1, ε2 and

ε3. For example, ε2 and ε3 are gradually decreased from Type

I to Type IV. In addition, ε1’s in Types I and II are the same

but are smaller than those in Types III and IV.

The results for Types I, II, III, and IV are shown in Figs. 1

and 2(a)-(d) with L = 3 and L = 9, respectively. It should be

noted that SOMP-(b+d)-supp considers the success of “support

detection” instead of signal reconstruction in SOMP-(b+d).

Thus, by Corollary 2, success may happen even when K > M .

It is also observed from Figs. 1(a)-(b) that the curve of

SOMP-(b+d) overlaps with that of SOMP-(b+d)-supp. This is

because correct support detection implies perfect reconstruc-

tion for K ≤ M . In addition, it is surprising to see from Figs.

1(c)-(d) that SOMP-(b+d)-supp exhibits higher probability of

success when K approaches N . This may be due to that since

the number
(

N

K

)

of candidate support sets approaches 1.

SOMP-(a+c) maintains the performance from Fig. 1(a)-(d).

In addition, SOMP-(b+c) outperforms SOMP-(a+c) remark-

ably when signals have the same sign, as shown in from

Figs. 2(b)-(d). Compared with SOMP-(b+c), the assumption

in SOMP-(b+d) is more sensitive to Euclidean distances be-

tween signals, implying large ε3, such that its performance

is worse than SOMP-(b+c). However, in terms of support

detection, SOMP-(b+d) has potential to lower the number of

measurements when M < K . In addition, when ε2 = ε3 = 0,

SOMP-(b+d) outperforms SOMP-(b+c). Fig. 2 reaches the

same conclusions with Fig. 1 but exhibits higher successful

probability under L = 9.

In summary, SOMP-(a+c) has the weakest assumption

about signal ensembles such that it can be applied to all

different types of signal ensembles. Even so, for Types II-

IV, its performance is not the best among the methods used

for comparisons. In fact, when ε1, ε2, and ε3 are the best

choices such that the sufficient conditions are easy to satisfy

in Theorems 1∼3, respectively, the sufficient condition for

Theorem 1 is relatively not easy to satisfy.

V. CONCLUSION

In this paper, we have introduced the novel concept of

“Euclidean distances between signals” for the theoretical

performance analysis of MMVs. Our results based on RIP
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clearly illustrate how the size of signal ensembles affects the

performance of SOMP. In contrast, previous works based on

RIP are unrelated to the size of signal ensembles and are

degenerated to SMV. Finally, we have demonstrated that the

performance of CS algorithms under MMVs model can be

remarkably improved especially when the Euclidean distances

between signals are short.

VI. APPENDIX

Lemma 3. [23] Let I1, I2 ⊂ Ω be two disjoint sets (I1∩I2 =
∅). If δ|I1|+|I2| < 1, then

‖(ΦI1)
TΦI2x‖2 ≤ δ|I1|+|I2|(Φ)‖x‖2

holds for any x.

Proof of Theorem 2:

Proof. Here, I1 and I2 in Lemma 3 denote the chosen index

at t-th iteration and gound truth r Ω, respectively. By the

contrapositive of statement in Lemma 3, the chosen index and

Ω are not disjoint; i.e., support detection is correct.

Let Φi
Ω = [Φi

S | Φi
U ], where S denotes the support set that

has been solved and U denotes the support set that has not

solved yet. Let ri,t be the residual and let I be the chosen

index at t-th iteration. For simplicity, let ri and δi denote ri,t

and δ(Φi), respectively. When I /∈ Ω, we first derive the upper

bound of
∥

∥

∑

i(Φ
i
I)

T ri
∥

∥ by Lemma 3 as:

√
K

∥

∥

∑

i(Φ
i
I)

T ri
∥

∥ =
∥

∥

∑

i(Φ
i
U )

T (I − Φi
S(Φ

i
S)

†)Φi
Ux

i
U

∥

∥

≥
∥

∥

∑

i(Φ
i
U )

TΦi
Ux

i
U

∥

∥−
∥

∥

∑

i(Φ
i
U )

TΦi
S(Φ

i
S)

†Φi
Ux

i
U

∥

∥

= (I) + (II).

Let xi
U = x∗

U − ci, where ci ∈ R
|U| is any constant and

x∗
U =

∑

i x
i
U

L
, and ε2 = max

U∈P(Ω)\∅

∑

i ‖xi
U − x∗

U‖
L‖x∗

U‖
. Then,

(I) ≥ L ‖x∗‖ −
∥

∥

∑

i

[

(Φi

U )
TΦi

U − I
]

x
∗

U

∥

∥−
∥

∥

∑

i

[

(Φi

U )
TΦi

U − I
]

c
i
∥

∥

≥ L ‖x∗

U‖ (1− δK+1(A)− Lε2δ
max

K+1) .

(II) ≤ L
(δmax

K+1)
2

1−δmax

K+1

(1 + Lε2) ‖x∗

U‖ .

Therefore, the lower bound of
∥

∥

∑

i
(Φi

I)
T
r
i
∥

∥ is

L‖x∗‖√
K

[

1− δK+1(A)− Lε2δ
max

K+1 −
(δmax

K+1)
2

1− δmax

K+1

(1 + Lε2)

]

. (9)

By the similar technique, the upper bound is obtained by:

L ‖x∗

U‖
[

δK+1(A) + Lε2δ
max

K+1 +
(δmax

K+1)
2

1− δmax

K+1

(1 + Lε2)

]

(10)

Hence, the SOMP-(b+c) algorithm will choose correct support

if (9) > (10), which implies

(
√
K+1)δK+1(A)+

(

1 +
(√

K + 1
)

(Lε2 + η)
)

δmax
K+1 < 1,

with η = δmax
K+1 − δK+1(A). When all support are found

correctly, the SOMP-(b+c) algorithm will perfectly reconstruct

xi’s.
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