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Abstract—This paper proposes a novel way to design seismic
migration Finite Impulse Response (FIR) digital filters using
the Newton minimization algorithm. The algorithm requires
computing the inverse of the Jacobian matrix, which is non-
square for the seismic migration filters problem. In this case, we
suggest using the Moore-Penrose pseudo-inverse to obtain the
inverse of the Jacobian matrix. The proposed design algorithm
running time is about 8 times faster than the recently proposed
L1-norm algorithm. Furthermore, the proposed method results
in seismic migration filters that lead to practically stable seismic
images.

I. INTRODUCTION

Seismic data analysis is performed for numerous
applications such as petroleum exploration, determination of
the earth’s core structure, monitoring earthquakes, etc., [1].
The oil industry is interested in imaging the earth subsurface
layers using seismic waveforms. Due to factors related to the
geological structure of the earth itself, the layers appearing in
seismic sections are incorrectly positioned and the resolution
of such sections are also affected. Hence, seismic imaging is
very critical in obtaining accurate images of the subsurface [1].

There exist many proposed techniques to image the recorded
seismic data [1]–[4]. Seismic migration (using as frequency-
space (f − x)) filters have been developed to address strong
lateral variations of the subsurface structure velocities, a
common occurrence in the earth subsurface layers [1], [5]–[8].
If two-dimensional (2-D) seismic data is considered, the f−x
seismic imaging process requires filtering seismic wavefields
in the f − x domain. The filtering is based on the follow-
ing (normalized) one-dimensional (1-D) desired wavenumber
response [8]:

Hd(kx) = exp(jb
√
k2c − k2x), (1)

where kx is the normalized horizontal wavenumber. Note that
b = ∆z/∆x is a constant, where ∆z is the depth-sampling
interval and ∆x is the spatial sampling interval. Note that kc
is the normalized cut-off wavenumber. In the case of acoustic
seismic imaging it can be given by:

kc =
ω

c
, (2)

where ω is the angular frequency and c is the velocity of
the medium. Both the magnitude and the phase spectra

are of even symmetry and, hence, the filter coefficients are
complex-valued.

To accommodate for the strong lateral variations, research-
ers have, over the last two decades, focused on approximating
Eq. (1) by an N -length (N is odd) non-causal Finite Impulse
Response (FIR) digital filter that is of even symmetry (see for
example [6], [7], [9]–[13]). This filter can be mathematically
represented as:

H(ejkx) =
M∑
n=0

(2 − δ[n])h[n] cos(nkx), (3)

where h[n] represents the seismic migration FIR filter
coefficients, which are complex-valued, M = N−1

2 , and δ[n]
is the unit sample sequence.

In this paper, we show that the seismic migration FIR
filter design problem can be formulated and solved using the
Newton’s method. The resulting filters are efficient than some
existing techniques such as the L1-norm designed seismic
migration filters reported in [8] and result in practically stable
seismic images. We present the Newton’s-based seismic migra-
tion FIR filters design method and algorithm in section 2. Next,
in section 3, we present simulation results and comparisons
of designed seismic migration FIR filters. In section 4, we
discuss a few practical algorithm points. Finally, we conclude
the paper in section 5.

II. THE NEWTON’S-BASED SEISMIC MIGRATION FIR
FILTERS

The aim is to determine the set of the seismic migration
FIR filter coefficients h[n] such that H(ejkx) given by Eq. 3
fits the ideal (desired) wavenumber response Hd(kx) given by
Eq. 1. When sampling the wavenumber independent variable
kx into R samples, we can restate the seismic migration FIR
filter design problem (based on [8]) as follows:

Hd = Ch, (4)

or, equivalently,

F(h) = Hd −Ch = 0, (5)
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where
h =

[
h[0] h[1] . . . h[M ]

]∗
, (6)

C =


1 cos(kx1

) cos(2kx1
) . . . cos(Mkx1

)
1 cos(kx2

) cos(2kx2
) . . . cos(Mkx2

)
...

...
... . . .

...
1 cos(kxR

) cos(2kxR
) . . . cos(MkxR

)

 .
(7)

and, finally,

H =
[
Hd(kx1

) Hd(kx2
) . . . Hd(kxR

)
]∗
. (8)

Note that, in this case, Hd is of dimension R × 1, C is of
dimension R × M and h is a vector of size M × 1. Also,
note that ∗ denotes the Hermitian conjugate.

Using the first a few terms of Taylor series of F(h) = 0
(we showed in Eq. 5) in the vicinity of a possible seismic
migration FIR filter solution h, the set of the seismic migration
filter coefficients that satisfies Eq. 5 can iteratively be found
using the Newton’s method [14]. That is:

hk+1 = hk − [B(hk)]−1F(hk), (9)

where B is the Jacobian matrix and is given by:

B =


∂F1

∂h[0]
∂F1

∂h[1] . . . ∂F1

∂h[M−1]
∂F2

∂h[0]
∂F2

∂h[1] . . . ∂F2

∂h[M−1]

...
...

. . .
...

∂FR

∂h[0]
∂FR

∂h[1] . . . ∂FR

∂h[M−1]

 . (10)

Note that F1, F2, . . . , FR represent components of Eq. 5. We
can easily show that B = C, which means that the Jacobian
matrix is independent of h. Hence, we can write Eq. 9 as:

hk+1 = hk −C−1F(hk). (11)

Note that C is not invertible since it is of dimensions R×M ,
where usually R �M . Hence, we suggest using the Moore-
Penrose pseudo-inverse [15] of the Jacobian matrix C instead.

A. Proposed Newton-based Design Algorithm for Seismic Mi-
gration FIR Filters

The proposed Newton’s algorithm for designing the seismic
migration FIR filters is, hence, summarized as follows. The
algorithm starts with an arbitrary complex-valued vector h0.
Choosing a filter length N and a wavenumber cut-off kc, then
for the kth iteration, we will use the following steps:

1) Formulate the matrices C and Hd based on Eqs. 7 and
8, respectively.

2) Compute F(hk) using Eq. 5.
3) Compute the Moore-Penrose pseudo-inverse of the Jac-

obian matrix C.
4) Obtain hk+1 using Eq. 11.

If the mean square error between hk and hk+1 is less than
or equal to a predefined threshold ε, stop the algorithm;
otherwise, repeat steps 2 − 4.

Table I
NUMBER OF ITERATIONS AND RUNNING DESIGN TIME FOR THE DESIGNED

SEISMIC MIGRATION FIR FILTERS SHOWN IN FIGURE 1 BASED ON THE
PROPOSED NEWTON’S ALGORITHM AND THE L1-NORM DESIGN

ALGORITHM FOR N = 25.

Design method No. of iterations Time, s
Newton (MSE=10−35) 49 0.014728

L1-norm 31 0.120061

III. SIMULATION RESULTS

In this section, a 1-D complex-valued FIR seismic migration
digital filter is designed using the Newton algorithm given in
section 2. Figure 1 show the Newton’s seismic migration FIR
filter wavenumber magnitude and phase responses, respect-
ively, for a normalized kc = 0.25, ∆z = 2 m, ∆x = 10
m, N = 25 with a MSE of ε = 10−35, and R = 512.
Clearly the response of the designed filters approximate the
response of the desired filters and , hence, can result in stable
seismic migration [7]. Also, from Figures 1 (a) and (b), we
see that the proposed method results in a better magnitude
response as well as comparable phase response with that of
the L1-norm seismic migration FIR filter reported in [8]. In
addition, Figure 1 (c) plots the mean-square error between
consecutive iterations versus the number of iterations required
to meet the pre-defined stopping threshold for the designed
filter. The algorithms required 49 iterations to converge with
ε = 10−35. Also, Table I shows that the running time for
designing the seismic migration FIR filters using the proposed
method is about 8 times faster than the one designed based
on the L1-norm algorithm. This is despite the fact that it took
more iterations than the L1-norm algorithm.

Finally, to prove the concept, we designed and stored in a
look-up table (e.g., [9], [16]) a set of 1260 frequency-velocity
dependent seismic migration FIR filters with a maximum
frequency fmax = 45 Hz, a filter length of N = 25
coefficients, and the MSE ε = 10−35. On account of symmetry
conditions, only 13 out of the 25 coefficients were stored.
Also, the used number of wavenumber points R = 512.
The filters were implemented in a poststack explicit depth
extrapolation method as reported by Holberg [9]. In this
method, the filter coefficients are implemented as a spatially
varying convolution. In this case, lateral velocity variations
can be accommodated for data similar to the SEG/EAGE salt
model (see [7], [8]). The SEG/EAGE salt data parameters
were ∆z = 2 m, ∆x = 10 m. Figure 2 shows the imaging
result obtained by using the 25-length seismic migration filter
coefficients designed with the proposed Newton’s algorithm.
Furthermore, Figure 2 shows that the designed Newton-based
filters lead to practically stable seismic images. That is, when
using such designed filters (meeting the seismic migration
design requirements) in such an extrapolation method, the
seismic data amplitude values from the pervious extrapolation
step are neither amplified nor attenuated. Hence, the images
are practically stable.
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Figure 1. Accuracy of the Newton-based designed seismic migration FIR
filters (also compared with ones designed using the L1-norm minimization
algorithm) with a normalized kc = 0.25, N = 25 and a MSE of ε = 10−35.
(a) and (b) display their magnitude and phase responses within the passband
compared with the desired wavenumber response provided in Eq. (1). (c)
show the MSE between hk+1 and hk versus the number of iterations for the
designed 1-D seismic migration filter.

IV. DISCUSSION

The initialization of the algorithm when designing 1-D
seismic migration FIR filters using the proposed Newton-based
method is important to discuss. A good choice could be to
start with an approximation of the ideal filter response to

Figure 2. To prove the concept, image of the seismic SEG/EAGE salt
data obtained using the proposed Newton-based algorithm with the seismic
migration FIR filters (N = 25).

initialize the algorithm. This is obtained by inverse Fourier
transforming the ideal filter wavenumber response into the
space domain, saving a number of the early iterations. Another
way, which we have adopted here, is to make h0 equal to
the least square solution (see [8]). Starting with any of the
above suggestions will decrease the probability of the proposed
algorithm diverging. This would further be investigated in
future work.

V. CONCLUSIONS

In this paper, we demonstrated that the problem of designing
seismic migration FIR filters can be formulated and solved
based on the Newton’s method. The proposed design algorithm
running time is about 8 times faster than the recently proposed
L1-norm algorithm. We showed an application of the filters
on the SEG/EAGE benchmark seismic model data set. The
designed Newton-based filters lead to practically stable seismic
images. Finally, it is straight forward to extend the paper’s
proposed methods to design efficient 2-D seismic migration
FIR filters, that could used to migrate 3-D seismic data. This
is an undergoing research work.

VI. ACKNOWLEDGMENTS

The author thanks King Fahd University of Petroleum &
Minerals (KFUPM) for sponsoring this work.

REFERENCES

[1] O. Yilmaz, Ed., Seismic Data Analysis: Processing, Inversion, and
Interpretation of Seismic Data, 2nd ed. Society of Exploration
Geophysicists, 2001.

[2] A. Duchkov, F. Andersson, and M. de Hoop, “Discrete almost-symmetric
wave packets and multiscale geometrical representation of (seismic)
waves,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48,
no. 9, pp. 3408 –3423, sept. 2010.

[3] R. Streich and J. V. D. Kruk, “Accurate imaging of multicomponent
gpr data based on exact radiation patterns,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 1, pp. 93 –103, jan. 2007.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1413



[4] T. Sakamoto, S. Kidera, and T. Sato, “Seabed algorithm and comments
on ldquo;modeling and migration of 2-d georadar data: A stationary
phase approach rdquo;,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 45, no. 10, p. 3300, oct. 2007.

[5] J. T. Etgen, “Stability of explicit depth extrapolation through laterally-
varying media,” SEG 1994 Expanded Abstracts, 1994.

[6] J. W. Thorbecke, K. Wapenaar, and G. Swinnen, “Design of one-way
wavefield extrapolation operators, using smooth functions in WLSQ
optimization,” Geophysics, vol. 69, no. 4, pp. 1037–1045, 2004.

[7] W. A. Mousa, M. V. D. Baan, S. Boussakta, and D. McLernon,
“Designing stable operators for explicit depth extrapolation of 2-D &
3-D wavefields using projections onto convex sets,” Geophysics, vol. 74,
no. 2, pp. P.S33–S45, March-April 2009.

[8] W. A. Mousa, “Imaging of the SEG/EAGE salt model seismic data using
sparse f − x finite-impulse-response wavefield extrapolation filters,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 5,
pp. 2700–2714, May 2014.

[9] O. Holberg, “Towards optimum one-way wave propagation,” Geophys-
ical Prospecting, vol. 36, pp. 99–114, 1988.

[10] D. Hale, “Stable explicit depth extrapolation of seismic wavefields,”
Geophysics, vol. 56, pp. 1770 – 1777, 1991.

[11] L. J. Karam and J. H. McClellan, “Complex Chebyshev approximation
for FIR filter design,” IEEE Trans. on Circuits and Systems, vol. 42,
no. 3, pp. 207 – 216, March 1995.

[12] R. Soubaras, “Explicit 3-D migration using equiripple polynomial ex-
pansion and Laplace synthesis,” Geophysics, vol. 61, no. 5, pp. 1386–
1393, 1996.

[13] M. M. Naseer and W. A. Mousa, “Linear complementarity problem: A
novel approach to design finite-impulse response wavefield extrapolation
filters,” Geophysics, vol. 80, no. 2, pp. S55–S63, 2015.

[14] T. Sauer, Numerical Analysis, 2nd ed. Pearson, 2011.
[15] E. H. Moore, “On the reciprocal of the general algebraic matrix,”

Bulletin of the American Mathematical Society, vol. 26, no. 9, p. 394395,
1920.

[16] G. Blacquire, H. W. J. Debeye, C. P. A. Wapenaar, and A. J. Berkhout,
“3D table-driven migration1,” Geophysical Prospecting, vol. 37, no. 8,
pp. 925–958, 1989.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1414


