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Abstract—In multiview systems, color plus depth format
builds 3D representations of scenes within which the users can
freely navigate by changing their viewpoints. In this paper we
present a framework for view synthesis when the user requests
an arbitrary viewpoint that is closer to the 3D scene than
the reference image. On the target image plane, the requested
view obtained via depth-image-based-rendering (DIBR) is
irregularly structured and has missing information due to the
expansion of objects. We propose a novel framework that adopts
a graph-based representation of the target view in order to
interpolate the missing image pixels under sparsity priors. More
specifically, we impose that the target image is reconstructed
with a few atoms of a graph-based dictionary. Experimental
results show that the reconstructed views have better PSNR
and MSSIM quality than the ones generated within the same
framework with analytical dictionaries, and are comparable
to the ones reconstructed with TV regularization and linear
interpolation on graphs. Visual results, however, show that
our method better preserves the details and results in fewer
disturbing artifacts than the other interpolation methods.

Index Terms—Graph signal processing (GSP), depth-image-
based-rendering (DIBR), free viewpoint navigation, interpolation

I. INTRODUCTION

Multiview image processing has been receiving increased
attention lately with the advent of interactive navigation ap-
plications and immersive communication. One of the main
challenges in multiview systems is to offer a smooth navigation
in a 3D environment through an effective combination of
camera images and virtual views. While such navigation has
been quite intensively studied for settings when a user virtually
moves around the 3D scene, less work has been done when
navigation brings the user towards the scene. In this case, the
main challenge consists in properly interpolating details that
might become apparent in the virtual views, even if they are
not fully available in the reference views.

In this paper, we focus on the specific problem of zooming
in a 3D scene from a reference camera image. We propose a
novel method for interpolating the 3D visual information on a
regular image grid. This poses significant image reconstruction
challenges due to the lack of sufficient details in the reference
image, and the different expansion rates for objects in different
depth layers.

Specifically, given one reference image of a 3D scene and
the corresponding depth image, we want to reconstruct a target

virtual view that is closer to the scene via DIBR algorithm
[1] that uses depth information to estimate the image content
by geometric projections. Because DIBR is a pixel-based
projection method, pixels on the target view lie on an irregular
structure which necessitates a proper interpolation strategy to
reconstruct the virtual view. We represent the projected pixels
on the target view as a signal on a graph, which provides us
with the benefit of embedding the scene geometry within the
graph topology. We then propose a regularization framework
with a sparsity constraint and solve the interpolation problem
using the Orthogonal Matching Pursuit (OMP) algorithm [2].

Image interpolation has been addressed in the literature
mainly using deterministic and statistical methods [3], [4].
Deterministic methods assume a functional relationship be-
tween samples while statistical methods aim to minimize an
estimation error. More recently, graph-based methods have
been proposed for regularization [5], [6], [7]. Interpolation of
graph signals is handled in [8] from a sampling perspective,
while sparsity based interpolation methods using spectral
graph theory are presented in [9], [10], [11]. The work in
[12] formulates a patch-based maximum aposteriori problem
to fill the expansion holes using a smoothness prior on the
graph signal. None of the mentioned works have an irregu-
lar domain representation and the ability to preserve details
without restrictive priors on band-limitedness. In particular,
the method proposed in this paper permits to represent signals
on irregular graphs, taking into account both the geometry of
the scene and the signal values themselves, hence yielding to
a more detailed and consistent representation desired in a free
viewpoint navigation system.

The outline of the paper is as follows. We introduce our
view synthesis framework and the graph-based view represen-
tation formalism in Section II. In Section III we formulate
our graph-based interpolation problem and describe our new
solution based on a parametric spectral graph dictionary.
We validate the performance of our approach in Section IV.
Finally, conclusions are presented in Section V.

II. DEPTH-IMAGE-BASED INTERPOLATION FRAMEWORK

We consider a framework where we reconstruct a virtual
image based on a reference camera image and a depth map
captured further away from a 3D scene. With such forward
displacement, all objects of the scene are expanding, with a
faster rate for foreground objects than for the background, so
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that some image details become more prominent. We build
an estimate of the virtual image through DIBR. The projected
pixels, however, do not necessarily fall on the integer pixel
positions in the virtual view, as illustrated in Fig. 1. We
therefore need to interpolate the projected pixels, and possibly
fill in the expansion holes, in order to reconstruct a proper
estimate of the virtual view.

Fig. 1. Illustration of DIBR where the target image plane is closer to the
scene with respect to the reference image.

We propose to adopt a graph-based representation of the
target view, as it permits to describe data that lie on irregular
structures, such as the one created by depth-based projection
of the pixels in the reference image. A graph is denoted as
G = (V, E) where V are the vertices and E are the edges in
between. The set of vertices V is the union of the set of vertices
V0 that correspond to the pixel positions in the target view, and
the set of vertices V1 that correspond to the positions of the
projected pixels. The signal lying on G describes the luminance
information and is denoted as y. In general, no signal value is
available on the vertices in V0 after depth-based projection of
the reference image, which rather adds values on the vertices
in V1. The objective of our interpolation algorithm is exactly
to estimate the values of the signal y on the vertices in V0 for
target view rendering. In more details, we build the graph by
connecting vertices i and j with an edge of weight w(i, j) if
their 3D Euclidean distance is smaller than a threshold, and if
both vertices correspond to objects on the same depth layer.
We choose to set the edge weights to be a combination of
spatial distance and luminance difference between connected
nodes, and we compute them as

w(i, j) = exp−
(

d2i,j
2σ2

dist
+

(yi−yj)2
2σ2

val

)
(1)

for which di,j is the 3D Euclidean distance between nodes
i and j, yi and yj are the signal values on nodes i and j,
and σdist and σval characterize the geometric and photometric
spreads of the signal on graph, respectively. It can be shown
that this type of weights is similar to the weights used in
bilateral filtering, which has been very successfully used in
different image processing tasks [13].

In order to compute the edge weights, we estimate the
values of the signal on vertices V0 by linear interpolation of
the signal values on neighbour vertices in V1. Specifically,

we first build a triangular mesh on the reference depth image
that connects pixels belonging to the same layer. We do not
draw connections between pixels when the difference between
their depths exceed the predefined threshold. With the camera
displacement towards the 3D scene, the mesh triangles are
projected onto the target view. When a background pixel falls
inside a triangle corresponding to a foreground object, this
projection is discarded from the target view, which further
prevents layer blending. The neighbour nodes that are finally
chosen for linear interpolation of signal on the vertices in V1
correspond to the corners of each projected triangle.

III. GRAPH-BASED INTERPOLATION PROBLEM

Equipped with the above graph-based representation, we
describe now our image interpolation problem. The objective
is to use the information obtained by depth-based projection
of the vertices V1 to interpolate the image values on the
grid given by V0. This objective may lead to an ill-posed
problem, especially when there is a relatively large forward
displacement between the reference and synthetic view. We
therefore add a sparsity prior on the reconstructed image,
such that the details and texture have higher chances to be
preserved in the synthetic view. Altogether, we formulate our
image interpolation problem as follows:

min
x
‖M(y −Dx)‖22 subject to ‖x‖0 ≤ T0 (2)

where y is the target image, x is a sparse coefficient vector, D
is a dictionary of graph atoms, and T0 is a sparsity threshold.
We further introduce a binary mask M which takes the value
1 for the entries corresponding to the vertices in V1 and
0 otherwise. The minimization function measures the error,
while the constraint ensures a sparse reconstruction with T0
atoms. We solve the problem given in (2) using the OMP
algorithm [2] as it often provides an effective tradeoff between
computational complexity and quality of the sparse recon-
struction. We however note that other sparse reconstruction
methods like `1 minimization algorithms for example could
be used to solve (2) or similar objective functions.

Obviously, the choice of the dictionary D in (2) has a
large influence on the quality of the reconstruction result.
The dictionary has to be able to effectively represent the
most relevant features of natural images on irregular graphs.
We therefore propose to use here a spectral graph dictionary
learned on a set of training images. We form the dictionary as
a concatenation of subdictionaries that are polynomials of the
Laplacian L of the graph G, as defined in [14], [15]. As the
atoms are constructed on a polynomial kernel, they are well
localized on the graph, which permits to effectively represent
the local characteristics of the target images. As an additional
atom to our learned dictionary we add the eigenvector of L
that corresponds to the smallest eigenvalue of L, which is
a constant valued vector analogous to the DC component of
signals. We finally use the polynomial dictionary in order to
solve (2) and obtain the sparse approximation of the projected
signal on any target graph.
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IV. EXPERIMENTS

A. Experimental Settings

We now evaluate the performance of our interpolation al-
gorithm in different datasets and for different zoom in factors.
We compare our solution with similar algorithms to the one
described in Section III, but with alternative dictionaries. In
particular, we compare our parametric dictionary with two
transform dictionaries: the Graph Fourier Transform (GFT)
dictionary [16], which is the orthonormal dictionary that is
composed of the eigenvectors of the graph laplacian L, and
the Spectral Graph Wavelet Transform (SGWT) dictionary
[17] that has J = 3 scales and a lowpass subdictionary. We
also compare our method with TV regularization on weighted
graphs [6], [7] and a classical interpolation method that simply
moves the projected pixels onto the closest grid points on the
target image and eventually performs linear interpolation to
estimate the unknown values of the signal.

In order to learn our graph spectral dictionary D, we use
depth and texture patches of size n × n from the Microsoft
MSR 3D video datasets [18], which are used to simulate small
forward displacements. The resulting graph signals, on grid
pixels and projected pixels, are used to train our dictionary.
We chose n = 10 for patch size, K = 5 for the degree
of polynomial functions and S = 4 for the number of
subdictionaries. We fix the sparsity constraint to 10% of the
signal dimension in the dictionary learning algorithm [15] and
we use a total of 2880 training signals on different graphs.

We then implement the image interpolation algorithm on
patches of the complete images, namely on overlapping graphs
that are in b × b pixel range in the target image plane, with
b = 30. We test our interpolation algorithm on 6 images from
the 2005 Middlebury Stereo Dataset [19]. We have performed
our experiments using two different user displacements. The
first case is a smaller user displacement that yields to ap-
proximately 59% and 34% expansion holes in the target view
for graph based methods and the linear interpolation method,
respectively. For the larger user displacement, the respective
ratios increase to 67% and 51%. We present the visual results
in Fig. 2-5. PSNR and MSSIM [20] values are presented in
Tables I-IV.

B. Interpolation Performance

We first see in Tables I to IV that our interpolation method
with a learned dictionary outperforms the alternative dictionar-
ies for all test images in expansion hole filling, in terms of both
PSNR and MSSIM metrics. The atoms of the GFT dictionary
are not well localized in the vertex domain, while SGWT
atoms are more localized both in the vertex and spectral
domains but not specifically adapted to the statistics of the
graph signals under consideration. Our learned dictionary has
the advantage of preserving the common spectral components
of the class of natural images, hence provides better recon-
struction quality.

The other graph based interpolation method that we have
used for comparison is the TV regularization. We have per-

TABLE I
PSNR VALUES FOR THE INTERPOLATION OF TARGET VIEWS WITH 59%

AND 34% EXPANSION HOLES FOR GRAPH BASED AND LINEAR
INTERPOLATION METHODS, RESPECTIVELY.

GFT SGWT Linear TV0 TV0.5 TV1 Our method
Art 32.49 30.17 34.41 29.92 33.84 34.44 33.90
Moebius 30.33 28.75 34.50 30.66 34.41 35.10 34.38
Books 28.06 24.25 31.43 28.11 30.89 31.18 29.53
Laundry 27.62 25.38 31.27 28.79 31.43 31.72 30.54
Reindeer 30.27 29.87 34.55 30.40 33.73 34.13 33.08
Dolls 27.86 26.96 32.14 27.75 32.02 32.49 31.25

TABLE II
PSNR VALUES FOR THE INTERPOLATION OF TARGET VIEWS WITH 67%

AND 51% EXPANSION HOLES FOR GRAPH BASED AND LINEAR
INTERPOLATION METHODS, RESPECTIVELY.

GFT SGWT Linear TV0 TV0.5 TV1 Our method
Art 29.80 27.24 31.58 29.09 32.57 32.92 32.31
Moebius 28.35 25.8 31.57 29.94 33.22 33.69 33.10
Books 26.27 22.45 28.56 27.04 29.38 29.57 28.30
Laundry 25.12 23.30 28.08 26.89 29.10 29.26 28.44
Reindeer 28.67 28.01 32.08 29.90 32.69 32.94 32.24
Dolls 25.58 23.85 29.27 26.80 30.32 30.62 29.59

TABLE III
MSSIM VALUES FOR THE INTERPOLATION OF TARGET VIEWS WITH 59%

AND 34% EXPANSION HOLES FOR GRAPH BASED AND LINEAR
INTERPOLATION METHODS, RESPECTIVELY.

GFT SGWT Linear TV0 TV0.5 TV1 PolDict
Art 0.9917 0.9863 0.9955 0.9692 0.9911 0.9933 0.9935
Moebius 0.9815 0.9764 0.9942 0.9556 0.9843 0.9889 0.9899
Books 0.9716 0.9574 0.9898 0.9467 0.9776 0.9820 0.9796
Laundry 0.9815 0.9762 0.9913 0.9567 0.9851 0.9882 0.9878
Reindeer 0.9817 0.9801 0.9938 0.9655 0.9875 0.9901 0.9895
Dolls 0.9778 0.9766 0.9904 0.9488 0.9866 0.9896 0.9881

TABLE IV
MSSIM VALUES FOR THE INTERPOLATION OF TARGET VIEWS WITH 67%

AND 51% EXPANSION HOLES FOR GRAPH BASED AND LINEAR
INTERPOLATION METHODS, RESPECTIVELY.

GFT SGWT Linear TV0 TV0.5 TV1 PolDict
Art 0.9856 0.9771 0.9913 0.9672 0.9897 0.9919 0.9919
Moebius 0.9713 0.9638 0.9880 0.9508 0.9818 0.9864 0.9875
Books 0.9602 0.9419 0.9796 0.9395 0.9730 0.9776 0.9763
Laundry 0.9687 0.9619 0.9806 0.9470 0.9790 0.9820 0.9810
Reindeer 0.9728 0.9645 0.9888 0.9631 0.9857 0.9881 0.9873
Dolls 0.9650 0.9622 0.9843 0.9396 0.9818 0.9851 0.9828

formed TV regularization with three different fidelity param-
eters λ for the fitting term and used the linearly interpolated
signal values as initial data. In this case, the quantitative
metrics like PSNR and MSSIM take higher values for the TV
regularized target views with λ = 1 compared to our method,
especially when the user displacement is smaller. Likewise, the
PSNR and MSSIM measures for linear interpolation are better
for smaller user displacement since less holes are present on
the target view. Visual artifacts for TV regularization methods
and linear interpolation are however clearly visible on the
interpolated images in Fig. 2-5(e) and (f). Significant rounding
artifacts around objects are present as a result of the linear
interpolation while the blurring effect of TV regularization
is observable throughout the figures. TV regularization also
brings a higher computational cost as it requires iterations until
convergence. Although linear interpolation has the smallest
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(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Dolls image. (b) Detail view of the ground truth within red rectangle. (c)-(f) Interpolation results within red rectangle: (c) our method, (d) GFT,
(e) Linear, (f) TVλ=1 for 59% and %34 expansion holes (top row), 67% and 51% expansion holes (bottom row) for graph based and linear interpolation
methods, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) Art image. (b)-(f) Detail view of the ground truth and interpolation results within red (top row) and green (bottom row) rectangles: (b) ground
truth, (c) our method, (d) GFT, (e) Linear, (f) TVλ=1 for 67% and 51% expansion holes for graph based and linear interpolation methods, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 4. (a) Moebius image. (b)-(f) Detail view of the ground truth and interpolation results within red rectangle: (b) ground truth, (c) our method, (d) GFT,
(e) Linear, (f) TVλ=1 for 67% and 51% expansion holes for graph based and linear interpolation methods, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 5. (a) Laundry image. (b)-(f) Detail view of the ground truth and interpolation results within red (top row) and green (bottom row) rectangles: (b) ground
truth, (c) our method, (d) GFT, (e) Linear, (f) TVλ=1 for 67% and 51% expansion holes for graph based and linear interpolation methods, respectively.

computational complexity among all other methods, the re-
sults become less reliable with increasing zoom factors while
rounding errors are highlighted even more. Our method does
not present these artifacts, as expected from the benefits of

graph based representation, and performs better than the linear
interpolation method on object boundaries and continuous
structures, as well as textured areas. Fig. 4 shows that our
method preserves the background texture better than TV, while
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there are less artifacts on the foreground compared to linear
interpolation and GFT. Similarly, we see that our method
has less blur both in the foreground and background in Fig.
5 compared to other methods. The top row shows that our
method is able to achieve a more detailed reconstruction
of foreground textures with much fewer artifacts. Despite a
higher computational complexity for solving the optimization
problem in equation (2) compared to basic linear interpolation,
we obtain higher quality target views using our polynomial
dictionary.

V. CONCLUSION
In this work, given a reference texture and depth image, we

have synthesized a target image located at a closer viewpoint to
the scene. We have represented the target view as a weighted
graph that separates objects in different layers and contains
information on both the topology of the scene and signal
values. We have learned a parametric dictionary on multiple
graphs whose atoms carry the common characteristics of
natural images in our framework, and used a dictionary-based
regularization method under sparsity constraints. Visual results
show that our method preserves the details in the target view
better and avoids rounding errors and smoothing effects that
are present in competitor solutions, while the quantitative
performance is comparable to other interpolation methods.
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