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⇤International Audio Laboratories Erlangen, Friedrich-Alexander University (FAU), Erlangen, Germany,
currently with XMOS Ltd, Bristol, UK

†Fraunhofer Institute for Integrated Circuits (IIS), Erlangen, Germany
‡International Audio Laboratories Erlangen, Friedrich-Alexander University (FAU), Erlangen, Germany

§Aalto University, Department of Signal Processing and Acoustics, Espoo, Finland

Abstract—The spectral envelope of a speech signal encodes
information about the characteristics of the speech source. As
a result, spectral envelope modeling is a central task in speech
applications, where tracking temporal transitions in diphones and
triphones is essential for efficient speech synthesis and recognition
algorithms. Temporal changes in the envelope structure are
often derived from estimated formant tracks, an approach which
is sensitive to estimation errors. In this paper we propose a
speech source model which estimates frequency and amplitude
movements in the spectral envelopes of speech signals and does
not rely on formant tracking. The proposed model estimates the
amplitude and frequency shifts for each sub-band and time frame
of a speech signal using the information from the previous time
frame. Our experiments demonstrate that the model captures
temporal structures of spectral envelopes with high precision.
The proposed model can thus be applied as an accurate low-
order representation of temporal dynamics in speech spectral
envelopes.

I. INTRODUCTION
Continuity is a fundamental property of speech, which is

supported for instance by the fact that there are no spe-
cific acoustic markers or gaps for delimiting phonemes [1].
Switching from one phoneme to another is usually a smooth
transition, where the movement of a phoneme also affects the
moving pattern of the following phoneme [2], an effect better
known as coarticulation. This suggests that features which
describe the smooth transitions of speech over time carry
important additional information compared to static speech
features.

In this paper we propose a speech source model which
captures smooth temporal movements of speech spectral en-
velopes in both amplitude and frequency. The estimated spec-
tral shifts can thus be viewed as dynamic formant move-
ments. While typical formant movement calculation relies
on LPC (Linear Predictive Coding)-based formant tracking,
our approach does not require formant tracking. Thus, it
is unaffected by typical formant tracking problems such as
spectral peak estimation, where it can happen that the wrong
peak position is selected due to small envelope variations
around the true peak. Also, in contrast to conventional formant
tracking approaches, where only the position of the spectral
peaks is estimated, our model takes into account the movement
of the entire spectral envelope shape in both frequency and
amplitude. This allows tracking envelope movements also in

areas with not so prominent peaks (where the peaks are very
smooth). Furthermore, since it is not limited to the few most
prominent peaks, but rather analyzes the entire area around the
peaks, it is able to track the spectral movement around peaks
which are close together. In the following, we will discuss
the applications for formant tracking and dynamic formant
movement estimation.

Formant tracking is an indispensable tool in speech applica-
tions, in particular in automatic speech recognition, because it
is easy to identify important groups of phonemes, e.g., vowels,
using only the formant information [3]. Other applications
such as text-to-speech synthesis [4] or spectral amplification
of speech in hearings aids [5] also rely on formant estimation.
Although robust for identifying vowels or certain consonants
such as nasal consonants, formants cannot be used to discrim-
inate between the rest of the consonants. Another drawback of
formant tracking algorithms is the fact that they require peak
picking for locating the formants. Peak picking algorithms are
sensitive to small local variations in the envelope contour,
which can lead to picking a local maximum instead of the
global one. In the proposed method, we avoid peak picking
altogether by using a minimum sum of squared residuals to
track the movements of the entire spectral envelope.

Dynamic formant movements are important acoustic cues
for speech analysis and synthesis. For instance, in speech
synthesis, including formant dynamics and using the origi-
nal formant contours instead of flat ones (constructed from
the formant frequencies measured in the steadiest part of a
vowel) was shown to improve vowel intelligibility [6]. In
speech analysis, large formant movements were observed in
hyperarticulated speech, i.e., speech emphasized by a talker
in a noisy environment or when speaking to a hearing-
impaired person [7]. Since such dynamics were not observed
for normal or conversational speech, these differences allow
distinguishing between the two types of speech. Dynamic
formant movements are also employed in vowel identification
tasks, for which metrics based on formant movements, steady-
state formant values and vowel duration are used [8]. Due
to the design based on LPC formant tracking, the previous
formant movement metrics suffer from several drawbacks. For
instance, spectral change estimators cannot efficiently describe
more complex formant movements, while the spectral angle
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cannot capture the direction of the formant movement [8].
In our proposed approach, we avoid such issues since we
analyze the amplitude and frequency movements over the
entire spectral envelope in time and do not restrict ourselves
to a few frequency points for the main formants. An additional
advantage of the proposed formant shift estimation is the fact
that we can separately investigate the movement in frequency
and the movement in amplitude.

Another application for both formant tracking and dynamic
formant movement is in medical speech analysis, where they
can be used for detecting certain motor neurone diseases, such
as amyotrophic lateral sclerosis (ALS), which is characterized
at an early age by speaking difficulties. Identifying speech
properties that correlate with such abnormal speaking behavior
is crucial for a quick and early detection of the disease. In [9],
the authors propose using features based on formant statistics
and on the first and second derivatives of formant trajectories.
They show that the mean second formant (F2) speed and the
mean F2 acceleration have the highest correlation with the
intelligibility and speaking rate of ALS patients. Our formant
shift estimate can be flexibly modified to include only the sub-
bands corresponding to the F2 range and can thus be directly
used for such detecting ALS without the need of performing
formant tracking.

Such a speech source model is also relevant for all applica-
tions which require low-order representations of the spectral
envelope. For instance, the information contained in the esti-
mated formant shift parameters can be used to interpolate lost
speech frames in case of packet loss for voice communication
applications [10].

II. SIGNAL MODEL

The proposed source model is not a global model, but rather
a local one, since it analyzes spectral envelope movements
over a small frequency range, where we assume that the
temporal change in the envelope is constant. This assumption
is necessary since the formant shift may vary from formant to
formant. That is, over time �t, the first formant might move
in the opposite direction compared to the second formant.
However, if we consider a small enough frequency region,
e.g., over only one formant, the formant shift is expected
to be constant (all points move by the same distance in
the same direction). A safe choice for the frequency range
is the bandwidth of the narrowest formant. Let us consider
such a small frequency range as depicted in Fig. 1, where
ki represents the vector of all frequency bins over which
the formant shapes stretch, while k0 and k0 + �k denote
each a frequency bin index. The horizontal axis in the figure
shows the frequency, while the vertical axis shows the spectral
envelope amplitude. Note that vectors are marked by bold
letters, while normal letters denote scalars.

In the proposed model, the constant formant shift, which
is depicted by a diagonal direction in Fig. 1, is decomposed
into two movements: a vertical one, denoted by ai�t, and a
horizontal one, denoted by bi�t, where ai and bi are real-
valued scalars. Our aim is to model the formant shift for the
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Fig. 1. Spectral envelope shift X(ki, t0) ! X(ki, t0+�t) is assumed constant
over small frequency range ki.

time transition t0 ! t0 + �t as a function of the current
and previous envelopes. Let us consider the example shown
in Fig. 1, where the points on the curve X(ki, t0) move by the
same distance (depicted by diagonal arrows) to new positions
on the curve X(ki + �k, t0 + �t) at t0 + �t. X(k, t) is
the general expression for the magnitude spectral envelope
of a speech signal and k is the vector of frequency bins
up to the Nyquist frequency. Thus, if the peak maximum
X(k0, t0) denotes a formant, at time t0+�t the formant shifts
to X(k0 + �k, t0 + �t), where �k = b�t. For notational
simplicity, we will neglect the index i in the following.

Let us focus on the formant shift from X(k0, t0) to X(k0 +
�k, t0 +�t) and write X(k0 +�k, t0 +�t) as a function of
X(k0, t0):

X(k0 + b�t, t0 +�t) = (1 + a�t) · X(k0 +�k, t0)
' (1 + a�t) · [X(k0, t0) +�kX0(k0, t0)]

(1)

In Eq. 1, X(k0 + �k, t0) was approximated by a first-order
Taylor series using X(k0 +�k, t0) ' X(k0, t0) +

X0(k0,t0)
1! �k,

where X0(k0, t0) represents the derivative of X(k0, t0) over
frequency. The derivative of the magnitude spectral envelope
can be computed by taking the gradient of the envelope over
frequency or can be approximated by the simple difference
between neighbouring points on the envelope.

For simplicity, we use X0 instead of X(k0, t0) and bX1

instead of X(k0+�k, t0+�t) and replace �k by b�t in Eq. 1,
which, considering the entire frequency range ki, becomes:

bX1 ' (1 + a�t) · (X0 + b�t · X0
0). (2)

Using Eq. 2, the formant shift parameters a and b are estimated
by minimizing the sum of squared residuals Eres(bX1, ki),
where the residual is computed as the difference between the
estimated and the true envelope at t0 +�t over the frequency
range denoted by ki:

min
a,b

Eres(bX1, ki) = min
a,b

||X1 � bX1||2

= min
a,b

||X1 �
⇥
(1 + a�t) · (X0 + b�t · X0

0)
⇤
||2.

(3)
Here bX1 corresponds to our model approximation of X1

in Eq. 2 and ||X||2 = XT X denotes the vectorial 2-norm.
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The previous equation is further simplified by the variable
substitution c = (1 + a�t) and d = b�t · (1 + a�t), resulting
in:

min
a,b

||X1 � bX1||2 = min
c,d

||X1 � cX0 � dX0
0||2. (4)

This can be rewritten in a simpler form as:

min
a,b

||X1 � bX1||2 = min
s

||X1 � Zs||2, (5)

where Z = [X0 X0
0] and s = [c d]T . Eq. 5 can now be

solved using the linear least squares approach, which results
in s = (ZT Z)�1ZT X1, which can be expanded into:

h
s
i
=

2

4 c

d

3

5 =

2

4XT
0 X0 XT

0 X0
0

X0T
0 X0 X0T

0 X0
0

3
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·

2
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3
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Using the definition of c and d, the final solution for a and b
becomes:

8
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. (7)

III. SYSTEM DESCRIPTION

The input time signal x(t) is first cut into 128 ms segments
xi with 75% overlap, where index i denotes the segment
index. Each segment is multiplied with a Hamming window
w, resulting in xw,i, followed by the extraction of 16 LPC
coefficients xLPC,i. A 1024-point Fourier transform is then
applied over the LPC coefficients and the spectral envelope
Xi is computed as the energy-normalized inverse magnitude
thereof:

xLPC,i = LPC{xw,i}
XLPC,i = 1/F{xLPC,i}

Xi = XLPC,i · ||xw,i||2/||XLPC,i||2.
(8)

The spectral envelope is then split into uniform 250 Hz sub-
bands with 50% overlap. The sub-band overlap allows for a
smooth combination of the estimates and avoids discontinuities
around the boundaries of the sub-bands. For each sub-band,
the envelope parameters a and b are estimated using Eq. 7. The
estimated spectral envelope is then computed using Eq. 2. Note
that due to the overlap between sub-bands, we need to combine
several envelope estimates for the same frequency range. To do
so, we multiply each sub-band by a Hanning window equal
in length to the number of frequency bins in the sub-band
and use an approach similar to the overlap-add method for
the Short-Time Fourier Transform (STFT) to synthesize the
envelope estimates into one single curve.
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Fig. 2. Vowel-vowel transition. The time segment corresponding to the current
frame is shown in the upper plot. The magnitude spectral envelopes of the
previous frame (dashed black line) and current frame (dotted black line),
together with the estimated spectral envelope of the current frame (dashed
red line) are shown in the lower plot. Notice that shape of the estimated
spectral envelope of the current frame follows so closely the shape of the true
envelope of the current frame, that they are almost indistinguishable in the
plot.

IV. EVALUATION

In this section we will present the results of different
evaluations on the proposed speech model. More precisely,
our aim was to investigate the following:

• whether the model can accurately be used to reconstruct
a speech envelope,

• a good choice for the sub-band bandwidth over which
the model parameters are estimated such that both high
accuracy and low complexity are achieved,

• whether there is a difference between modeling female
and male speakers with the proposed speech model.

A. Modeling accuracy

In Fig. 2, a vowel-vowel transition frame is shown for item
SA1 from \TEST\DR1\of the TIMIT database [11]. The file
consists of a 16-bit, 16 kHz speech utterance from a female
speaker in American English. In the upper plot, the current
time frame is plotted. In the lower plot, the spectral envelope
X0 of the previous frame (dashed black line) and the spectral
envelope X1 of the current frame (dotted black line) are shown.
The reconstructed envelope bX1 of the current frame, using
the estimated amplitude and frequency shift parameters a and
b as described in Eq. 2, is plotted here as a dashed red
line. Both amplitude and frequency shifts are clearly visible,
e.g., looking at the first peak (formant) at 470 Hz, which in
the current frame was shifted to 531 Hz. We note that the
reconstructed spectral envelope follows very closely the true
spectral envelope of the current frame. This suggests that the
proposed source model is able to accurately incorporate the
time evolution of the spectral envelope shape between the
previous and the current frame.

To better understand how well the reconstructed spectral
envelope matches the true envelope shape, we computed the
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estimation error Eres(bX1, k), as described in Eq. 3, over the en-
tire frequency range and for each frame. However, the absolute
error is not a good indicator of how close our estimation is with
respect to the true value. We therefore computed the relative
error Eres,rel(bX1, k) = ||X1�bX1||2/||X1||2, which contains the
normalization with respect to X1. By replacing the estimated
envelope of the current frame with the true envelope of the
previous frame, we also computed the baseline relative error
Eres,rel(X0, k) = ||X1 � X0||2/||X1||2. The baseline relative
error serves as lower reference, describing the case where
no estimate is available and the envelope of the previous
frame is used instead. To our knowledge, there are no other
methods which would be suitable to use for direct comparison
with the estimated formant shift parameters. The delta-formant
tracks or the time differences between the positions of the
main formant tracks, which can be computed as in [12] is
limited only to the position of the formants and cannot be
used to model the areas in between formants for instance. In
contrast, our approach is capable of modeling the movements
along the entire spectral envelope. From this perspective, it
might seem more plausible to compare our approach to a
delta-envelope measure, which captures the difference in the
spectral envelope over consecutive frames. Nevertheless, this
does not allow separating between the two effects, i.e., the
amplitude and the frequency shift, which is done in our model.
As a result, a direct comparison of the proposed formant shift
estimates with other features was not possible, so we chose
to evaluate the envelope reconstruction error instead. Here, a
plausible lower reference was easily identified by employing
the envelope of the previous frame, which covers the scenario
where no estimate is available and the closest match to the
current frame is considered.

Fig. 3 shows in the upper plot the magnitude spectral
envelope of item SA1. In the middle plot, the relative error
of the envelope estimate (solid black line) and the relative
baseline error (dashed black line) are shown. The relative error
for our proposed model is on average �25.6 [dB], which is
significantly lower than the average baseline error of �5.9
[dB]. In the lower plot, the difference between the two errors
�Eres,rel = Eres,rel(bX1, k)�Eres,rel(X0, k) is depicted. We can
clearly see that the relative error for the estimated envelope
is on average around 20 dB lower than the relative baseline
error. This shows that our modeling is accurate and results in
low residual error.

B. Choice of sub-band bandwidth

A general note on the proposed speech source model is
that it is sensitive to the approach used for splitting the
spectral envelope into sub-bands. The formant shift parameter
estimation is done after the spectral envelope is extracted,
so it is performed on a smooth curve, which is divided into
smaller equal segments by means of a filterbank, where the
amount of overlap and the bandwidth of each filter is flexible.
The amplitude and frequency shifts of the formants are then
estimated for each filter in the filterbank or sub-band. On
one hand, the amount of overlap between the sub-bands is
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Fig. 3. The upper plot shows the magnitude spectral envelope of the
audio signal. The middle plot shows the relative error between the envelope
reconstructed with the model parameters and the true envelope (solid black
line). The relative baseline error between the current and the previous spectral
envelope is depicted here as a dashed black line. The bottom plot shows the
relative error difference. The estimation was done for a sub-band bandwidth
of 250 Hz.
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Fig. 4. The relative error between the envelope reconstructed with the model
parameters and the true envelope for sub-band bandwidths of 125 Hz, 250
Hz and 500 Hz.

important since larger overlap allows recombining the sub-
band estimates into a smooth spectral envelope. On the other
hand, the size of each sub-band is critical for the proposed
model since we need to make sure that the range of a sub-
band is small enough such that our model assumption of
having a constant spectral shift still holds. From informal tests,
we observed that increasing the amount of sub-band overlap
results in only small improvements in �Eres,rel. However,
varying the sub-band bandwidth (BW) has a larger impact,
which we shall discuss in more detail in the following.

In Fig. 4, the error Eres,rel(bX1, k) is depicted for sub-band
bandwidths of 125 Hz (solid black line), 250 Hz (dashed blue
line) and 500 Hz (dotted red line). We notice that the error
gets smaller for narrower bandwidths, as expected.

The average error Eres,relALL,TIMIT for the proposed model
and for the baseline over all 6299 items in TIMIT is shown
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BW [Hz] 75 125 250 500 1000

Eres,rel ALL,TIMIT(
bX1, k) [dB] -37.3 -29.6 -24.6 -21.2 -19.0

Eres,rel ALL,TIMIT(X0, k) [dB] -5.4

TABLE I
AVERAGE RELATIVE ERROR OF THE PROPOSED METHOD AND OF THE

BASELINE OVER ALL TIMIT ITEMS FOR SUB-BAND BANDWIDTHS OF 75,
125, 250, 500 AND 1000 HZ.

BW [Hz] 75 125 250 500 1000

Eres,rel F,TIMIT(
bX1, k) [dB] -39.4 -31.2 -25.9 -22.2 -19.9

Eres,rel F,TIMIT(X0, k) [dB] -5.6

TABLE II
AVERAGE RELATIVE ERROR OF THE PROPOSED METHOD AND OF THE
BASELINE OVER ALL FEMALE SPEAKER TIMIT ITEMS FOR SUB-BAND

BANDWIDTHS OF 75, 125, 250, 500 AND 1000 HZ.

BW [Hz] 75 125 250 500 1000

Eres,rel M,TIMIT(
bX1, k) [dB] -36.3 -28.8 -24.0 -20.8 -18.6

Eres,rel M,TIMIT(X0, k) [dB] -5.2

TABLE III
AVERAGE RELATIVE ERROR OF THE PROPOSED METHOD AND OF THE
BASELINE OVER ALL MALE SPEAKER TIMIT ITEMS FOR SUB-BAND

BANDWIDTHS OF 75, 125, 250, 500 AND 1000 HZ.

in Tab. I for a wider range of sub-band bandwidths. For each
item in TIMIT, the mean Eres,rel over all frames in the item
is computed and the average thereof over all items denotes
the average relative error Eres,relALL,TIMIT. The smallest error
is obtained for the shortest sub-band (75 Hz). In comparison
with the previously discussed case of 250 Hz, the improvement
for a bandwidth of 75 Hz is 12.7 dB. While decreasing the sub-
band bandwidth clearly results in better spectral shift estimates
and thus a more accurate envelope estimate, this comes at the
expense of a higher computational cost, since a larger number
of parameters needs to be estimated. For instance, choosing
75 Hz instead of 250 Hz requires computing four times as
many sub-bands, which means four times more estimation
operations are performed. We therefore consider that the 250
Hz bandwidth is a good balance between estimation accuracy
and estimation cost.

C. Modeling of female and male speakers
The proposed source model was also assessed separately

for male and female speakers since formant positions vary for
different genders. The average relative error for female and
male speakers in TIMIT is depicted in Tab. II and Tab. III,
respectively. The estimation error is between 1 dB and 3 dB
lower for female speakers compared to male speakers, with
larger differences observed for narrower sub-bands, e.g., 75
Hz. Formant frequencies of female speakers are on average
higher than for male speakers [13], so the spectral envelopes
of female voices should be smoother at lower frequencies.

Since tracking changes in smooth envelopes is less susceptible
for estimation errors, a slightly smaller estimation error of the
formant dynamics is expected for female speakers.

V. CONCLUSIONS
In this paper we proposed a speech source model for

estimating frequency and amplitude movements of the spectral
envelope over time. In our investigations, we showed that the
proposed source model can efficiently capture the temporal
movements in the spectral envelopes. The high model ac-
curacy was confirmed by a low relative error between the
reconstructed envelope using the estimated parameters and
the true envelope. For female speakers the average relative
error was even a few dB lower than for male speakers. The
performance of the model depends however on the sub-band
bandwidth, which controls the balance between estimation
accuracy and computational cost. The proposed speech source
model is relevant for a variety of applications, in particular for
those which require low-order representations of the spectral
envelope variation over time.
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